Math, asked by bhaisora9, 9 months ago

find the value of x cosec 3x = (cot 30° + cot 60°) / (1 + cot 30° cot 60° cot 30°)

Answers

Answered by Dhruv4886
4

The value of x = 60°

Given:

cosec 3x = (cot 30° + cot 60°) / (1 + cot 30° cot 60°)

In given problem the denominator might be wrong the corrected one is

(1 + cot 30° cot 60°)

To find:

The value of x

Solution

Given cosec 3x = (cot 30° + cot 60°) / (1 + cot 30° cot 60° )

As we know from trigonometric table

cot 30° = √3 and cot 60° = 1/√3

Take RHS from given problem

RHS = (cot 30° + cot 60°) / (1 + cot 30° cot 60° )

substitute cot 30° = √3 and cot 60° = 1/√3 value

= \frac{\sqrt{3} + \frac{1}{\sqrt{3} } }{1 + \sqrt{3}(\frac{1}{\sqrt{3} } ) }

= \frac{\sqrt{3} + \frac{1}{\sqrt{3} } }{1 + 1 }  

=  \frac{ \frac{3 +1}{\sqrt{3} } }{2 }

=  \frac{3 +1}{\sqrt{3} } (\frac{1}{2})

=  \frac{4}{\sqrt{3} } (\frac{1}{2}) = \frac{2}{\sqrt{3} }

cosec 3x = 2/√3

As we know cosec 60° = 2/√3  

⇒ cosec 3x = cosec 60°

⇒ 3x = 60°

⇒ x = 20°

The value of x = 60°

#SPJ2

Similar questions