find the value of x cube + 1 by x cube
Attachments:
Answers
Answered by
11
given the value of x = 2 + √3
therefore (x)³ = (2 + √3)³
by using identity (a + b)³ = a³ + 3a²b + 3ab² + b³
= (2)³ + 3(2)²(√3) + 3(2)(√3)² + (√3)³
= 8 + 12√3 + 6(3) + 3√3
= 8 + 18 + 12√3 + 3√3
= 26 + 15√3
➡ 1/x³ = 1/(26 + 15√3)
➡ x³ + 1/x³ = (26 + 15√3) + (26 - 15√3)
= 26 + 15√3 + 26 - 15√3
= 52
rdeka9090:
very nice
Similar questions