Math, asked by rdeka9090, 1 year ago

find the value of x cube + 1 by x cube

Attachments:

Answers

Answered by Anonymous
11

given the value of x = 2 + √3

therefore (x)³ = (2 + √3)³

by using identity (a + b)³ = a³ + 3a²b + 3ab² + b³

= (2)³ + 3(2)²(√3) + 3(2)(√3)² + (√3)³

= 8 + 12√3 + 6(3) + 3√3

= 8 + 18 + 12√3 + 3√3

= 26 + 15√3

➡ 1/x³ = 1/(26 + 15√3)

 \tt =  \frac{1}{26 + 15 \sqrt{3} }  \\  \\ \tt =  \frac{1}{26 + 15 \sqrt{3} }  \times  \frac{26 - 15 \sqrt{3} }{26 - 15 \sqrt{3} }  \\  \\  \tt =  \frac{1(26 - 15 \sqrt{3}) }{(26 + 15 \sqrt{3} )(26 - 15 \sqrt{3} )}  \\  \\  \tt =  \frac{26 - 15 \sqrt{3} }{( {26})^{2} - ( {15 \sqrt{3} })^{2}  }  \\  \\  \tt =  \frac{26 - 15 \sqrt{3} }{676 - 675}  \\  \\  \tt = 26 - 15 \sqrt{3}

➡ x³ + 1/x³ = (26 + 15√3) + (26 - 15√3)

= 26 + 15√3 + 26 - 15√3

= 52


rdeka9090: very nice
rdeka9090: yes ... thank u
Similar questions