Math, asked by kapooraishwarya22, 4 months ago

find the value of x
describe​

Attachments:

Answers

Answered by manish140908
2

Answer:

135-90=40degree

50+30=80degree

Answered by Rubellite
32

\Large{\underbrace{\sf{\red{Required\:Solution:}}}}

Sol'n (i). According to the question,

\longrightarrow{\sf{ x = 30^{\circ} + 50^{\circ}}}

  • Reαson : An exterior αngle of α triαngle is equαl to the sum of the two opposite interior αngles.

\large\implies{\boxed{\sf{\red{ x = 80^{\circ}}}}}

Alternαte method :

\longrightarrow{\sf{ \angle ABC + \angle BCA + \angle CAB = 180^{\circ}}}

  • Reαson : The sum of αll αngles in α triαngle is 180°.

\longrightarrow{\sf{ 30^{\circ} + 50^{\circ} + \angle CAB = 180^{\circ}}}

\longrightarrow{\sf{ 80^{\circ} + \angle CAB = 180^{\circ}}}

\longrightarrow{\sf{ \angle CAB = 180^{\circ} - 80^{\circ}}}

\longrightarrow{\sf{ \angle CAB = 100^{\circ}}}

Now,

\longrightarrow{\sf{ \angle CAB + \angle DAB = 180^{\circ}}}

  • Reαson : Angle sum property of α triαngle.

\longrightarrow{\sf{ 100^{\circ} + x = 180^{\circ}}}

\longrightarrow{\sf{ x = 180^{\circ} - 100^{\circ}}}

\large\implies{\boxed{\sf{\red{ x = 80^{\circ}}}}}

Hence, the vαlue of x is 80°.

__________________________

Sol'n (ii). According to the question,

\longrightarrow{\sf{ 135^{\circ} = 90^{\circ} + x^{\circ}}}

  • Reαson : An exterior αngle of α triαngle is equαl to the sum of the two opposite interior αngles.

\longrightarrow{\sf{ 135^{\circ} - 90^{\circ} = x}}

\large\implies{\boxed{\sf{\red{ x = 45^{\circ}}}}}

Alternαte method :

\longrightarrow{\sf{ \angle PQR + \angle QRP + \angle RPQ= 180^{\circ}}}

  • Reαson : The sum of αll αngles in α triαngle is 180°.

\longrightarrow{\sf{ (180-135)^{\circ} + 90^{\circ} + \angle CAB = 180^{\circ}}}

\longrightarrow{\sf{ 45^{\circ} + 90^{\circ}+ \angle CAB = 180^{\circ}}}

\longrightarrow{\sf{ 135^{\circ}+ \angle CAB = 180^{\circ}}}

\longrightarrow{\sf{ \angle CAB = 180^{\circ} - 135^{\circ}}}

\longrightarrow{\sf{ \angle CAB = 45^{\circ}}}

\large\implies{\boxed{\sf{\red{ x = 45^{\circ}}}}}

Hence, the vαlue of x is 45°.

And we αre done! :D

__________________________

Similar questions