Math, asked by Sid5253, 6 months ago

find the value of x for the following distribution whose mean is 31.87 .

Attachments:

Answers

Answered by Anonymous
15

QUESTION

find the value of x for the following distribution whose mean is 31.87 .

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{cccc}\sf x_i &\sf f_i\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}\\\sf 12&\sf \ 8   \\\\\sf 20 &\sf \ 16 \\\\\sf 27&\sf \ 48 \\\\\sf 33&\sf 90\\\\\sf x&\sf 30 \\\\\sf 54&\sf 8  \\\\\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{\bf{}}\end{array}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

ANSWER

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{cccc}\sf x_i &\sf f_i&\sf f_ix_i \\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 12&\sf \ 8 &\sf 96 \\\\\sf 20 &\sf \ 16 &\sf 320 \\\\\sf 27&\sf \ 48&\sf 1296 \\\\\sf 33&\sf 90&\sf 2970\\\\\sf x&\sf 30 &\sf 30x \\\\\sf 54&\sf 8 &\sf 432 \\\\\sf Total &\sf \Sigma{f_i}=200&\sf \Sigma{f_ix_i}=5114 + 30x\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{\bf{}}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\end{array}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Now ,

 \sf mean \:  =  \dfrac{\sf \Sigma{f_ix_i}}{ \sf \Sigma{f_i}}

 \begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf 31.87 =  \frac{5114 + 30x}{200}  \\\end{gathered}\end{gathered}  \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf 6374 = 5114 + 30x \\\end{gathered}\end{gathered}  \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf 30x=6374 - 5114 \\\end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf 30x=1260 \\\end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf x =  \dfrac{1260}{30}  = 42 \\\end{gathered}\end{gathered}  \end{gathered}

\begin{gathered}  \begin{gathered}\begin{gathered} \Longrightarrow \underline{ \boxed{\displaystyle \sf hence \: x = 42 }} \\ \\\end{gathered}\end{gathered}\end{gathered}

____________________

additional information

mean of tabular data

If  \sf x_1,x_2,x_3,....,x_n are n observations with frequencies  \sf f_1,f_2,f_3,....,f_n respectively , then the mean x of these observation is given by

 \sf x  =  \dfrac{f_1x_1  +f_2x_2 +  f_3x_3 +...  + f_nx_n}  {f_1  +f_2 +  f_3+...  + f_n}  =  \dfrac{\Sigma{f_ix_i} }{\Sigma{f_i}}

where  \Sigma ( called sigma ) is the Greek letter representing summation.

Answered by Legend12R
1

Answer:

QUESTION

find the value of x for the following distribution whose mean is 31.87 .

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{cccc}\sf x_i &\sf f_i\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}\\\sf 12&\sf \ 8 \\\\\sf 20 &\sf \ 16 \\\\\sf 27&\sf \ 48 \\\\\sf 33&\sf 90\\\\\sf x&\sf 30 \\\\\sf 54&\sf 8 \\\\\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{\bf{}}\end{array}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

x

i

12

20

27

33

x

8

16

48

90

30

8

ANSWER

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{cccc}\sf x_i &\sf f_i&\sf f_ix_i \\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 12&\sf \ 8 &\sf 96 \\\\\sf 20 &\sf \ 16 &\sf 320 \\\\\sf 27&\sf \ 48&\sf 1296 \\\\\sf 33&\sf 90&\sf 2970\\\\\sf x&\sf 30 &\sf 30x \\\\\sf 54&\sf 8 &\sf 432 \\\\\sf Total &\sf \Sigma{f_i}=200&\sf \Sigma{f_ix_i}=5114 + 30x\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{\bf{}}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\end{array}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathsf mean \: = \dfrac{\sf \Sigma{f_ix_i}}{ \sf \Sigma{f_i}}mean=begin{gathered} \begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf 31.87 = \frac{5114 + 30x}{200} \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

⟹31.87=

2005114egin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf 6374 = 5114 + 30x \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

⟹6374=5114+30

begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf 30x=6374 - 5114 \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

⟹30x=6374−egin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf 30x=1260 \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

⟹30x=1260

begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \Longrightarrow\sf x = \dfrac{1260}{30} = 42 \\\end{gathered}\end{gathered} \end{gathered} \end{gathered}

⟹x=

30

1260

\begin{gathered}\begin{gathered} \begin{gathered}\begin{gathered} \Longrightarrow \underline{ \boxed{\displaystyle \sf hence \: x = 42 }} \\ \\\end{gathered}\end{gathered}\end{gathered}\end{gathered}

hence

___________________

additional information

mean of tabular data

If \sf x_1,x_2,x_3,....,xare n observations with frequencies \sf f_1,f_2,f_3,... respectively , then the mean x of these observation is given b\sf x = \dfrac{f_1x_1 +f_2x_2 + f_3x_3 +... + f_nx_n} {f_1 +f_2 + f_3+... + f_n} = \dfrac{\Sigma{f_ix_i} }{\Sigma{f_i}}x=

where \SigmaΣ ( called sigma ) is the Greek letter representing summation.

Similar questions