Math, asked by ayushkumar912, 8 months ago

Find the value of x for which 2 power of x ÷ 2 power of -4 = 45​

Answers

Answered by Anonymous
20

\Large{\bold{\blue{\underline{\red{A}\pink{ns}\green{we}\purple{r:-}}}}}

\rm{\mapsto The \: value \: of \: x = {log}_{2}(45) - 4}

\Large{\bold{\pink{\underline{\green{G}\purple{iv}\orange{en}\red{:-}}}}}

\rm{\leadsto {2}^{x} \div {2}^{-4}= 45}

\Large{\bold{\blue{\underline{\red{To}\:\pink{Fin}\green{d}\purple{:-}}}}}

\rm{\leadsto The \: value \: of \: x = \: ?}

\Large{\bold{\pink{\underline{\red{So}\purple{lut}\green{ion}\orange{:-}}}}}

\tt{: \implies  {2}^{x} \div  {2}^{ - 4} = 45}

\tt{: \implies  log_{2}( {2}^{x} \div  {2}^{ - 4}) =  log_{2}(45) }

\tt{: \implies  log_{2} \bigg( {2}^{x} \times  \dfrac{1}{ {2}^{ - 4} } \bigg) =  log_{2}(45) }

\tt{: \implies  log_{2}( {2}^{x}) +  log_{2} \bigg( \dfrac{1}{ {2}^{ - 4} }  \bigg) =  log_{2}(45) }

\tt{: \implies x log_{2}(2) +  log(1) -  log_{2}( {2}^{ - 4} )  =  log_{2}(45) }

\tt{: \implies 1x + log_{2}(1) -  log_{2}( {2}^{ - 4} ) =  log_{2}(45) }

\tt{: \implies 1x +  log_{2}(1) -  log_{2}( {2}^{ - 4}) =  log_{2}(45)}

\tt{: \implies x +  log_{2}(1) -  log_{2}( {2}^{ - 4} ) =  log_{2}(45) }

\tt{: \implies x + 0 -  log_{2}( {2}^{ - 4} ) =  log_{2}(45) }

\tt{: \implies x -  log_{2}( {2}^{ - 4} ) =  log_{2}(45) }

\tt{: \implies x - ( - 4 log_{2}(2) ) =  log_{2}(45) }

\tt{: \implies x + 4 log_{2}(2) =  log_{2}(45) }

\tt{: \implies x + 4 \times 1 =  log_{2}(45) }

\tt{: \implies x + 4 =  log_{2}(45) }

\bf{: \implies \underline{ \: \underline{ \red{ \: x =  log_{2}(45) - 4 \: }} \: }}

Similar questions