Math, asked by sushanthvarmasridatl, 7 months ago

Find the value of x for which (4/9)^4*(4/9)^-7=(4/9)^2x-1

Answers

Answered by Anonymous
4

Step-by-step explanation:

this question's answer is x = -1

Attachments:
Answered by anindyaadhikari13
9

Required Answer:-

Given:

  •  \sf { \bigg( \dfrac{4}{9} \bigg)}^{4}  \times  { \bigg(  \dfrac{4}{9} \bigg)}^{ - 7}  =  { \bigg( \dfrac{4}{9}  \bigg)}^{2x - 1}

To Find:

  • The value of x.

Answer:

  • The value of x is -1.

Solution:

We have,

 \sf \implies { \bigg( \dfrac{4}{9} \bigg)}^{4}  \times  { \bigg(  \dfrac{4}{9} \bigg)}^{ - 7}  =  { \bigg( \dfrac{4}{9}  \bigg)}^{2x - 1}

 \sf \implies { \bigg( \dfrac{4}{9} \bigg)}^{4 - 7}   =  { \bigg( \dfrac{4}{9}  \bigg)}^{2x - 1}   \:  \: \blue{ \bigg( {x}^{a}  \cdot {x}^{b}  =  {x}^{a + b} \bigg) }

 \sf \implies { \bigg( \dfrac{4}{9} \bigg)}^{ - 3}   =  { \bigg( \dfrac{4}{9}  \bigg)}^{2x - 1}

Comparing base, we get,

 \sf \implies 2x - 1 =  - 3

 \sf \implies 2x  =   - 3 + 1

 \sf \implies 2x  =  - 2

 \sf \implies x =  - 1

Hence, the value of x is -1.

Formulae To Know:

  •  \sf {x}^{a}  \times  {x}^{b}  =  {x}^{a + b}
  •  \sf {( {x}^{a}) }^{b}  =  {x}^{ab}
  •  \sf {x}^{0}  = 1 \:  \: (x \neq 0)
  •  \sf {x}^{y}  =  \dfrac{1}{ {x}^{ - y} }
  •  \sf {x}^{a}  =  {x}^{b} \implies a = b \:  \: (x \neq 1)
  •  \sf \dfrac{ {x}^{a} }{ {x}^{b} }  =  {x}^{a - b}
Similar questions