Math, asked by sumathivinodkumar, 1 month ago

find the value of x for which (5/3)^-4*(3/5)^-5=(3/5)^3x​

Answers

Answered by binayakgouda76
0

ANSWER

The value of x is -3.

Step-by-step explanation:

Given : Expression (\frac{5}{3})^{-4}\times (\frac{5}{3})^{-5}=(\frac{5}{3})^{3x}(

3

5

)

−4

×(

3

5

)

−5

=(

3

5

)

3x

To find : The value of x ?

Solution :

(\frac{5}{3})^{-4}\times (\frac{5}{3})^{-5}=(\frac{5}{3})^{3x}(

3

5

)

−4

×(

3

5

)

−5

=(

3

5

)

3x

Using exponent rule, a^b\times a^c=a^{b+c}a

b

×a

c

=a

b+c

(\frac{5}{3})^{-4+(-5)}=(\frac{5}{3})^{3x}(

3

5

)

−4+(−5)

=(

3

5

)

3x

(\frac{5}{3})^{-4-5}=(\frac{5}{3})^{3x}(

3

5

)

−4−5

=(

3

5

)

3x

(\frac{5}{3})^{-9}=(\frac{5}{3})^{3x}(

3

5

)

−9

=(

3

5

)

3x

Compare the base,

-9=3x−9=3x

x=-\frac{9}{3}x=−

3

9

x=-3x=−3

therefore the ans is -3 plz mark the brain list

Similar questions