Math, asked by priyasenthil7657, 9 months ago

find the value of x for which the distance between the points p(4 -5) and (12, x) is 10 units

Answers

Answered by manjirisharma2804
2

Answer:

p(4,-5), q(12,x)

By using distance formula

distance PQ= √(x1-y1)²+(x2-y2)²

10=√[4-(12)]²+(-5-x)²

10=√[-8]²+(-5-x)²

10=√64+25+x²+10x

10=√x²+10x+89

Squaring on both sides

(10)²=(√x²+10x+89)²

100=x²+10x+89

0=x²-10x+89-100

x²-10x-11=0

x²-(11-1)x-11=0

x²-11x+x-11=0

x(x-11)+1(x-11)=0

(x+1)(x-11)=0

x+1=0. , x-11=0

x=-1. , x=11

HOPE U LIKE IT..

HAVE A NICE DAY..

MARK ME AS THE BRAINLIEST...

Answered by Anonymous
26

CHAPTER -Coordinate geometry

SOLUTION:-

 \color{aqua} \sf PQ=10 \\

 \sf  \implies PQ²=(10)²=100 \\  \\

 \sf \implies(12-4)²+(x+5)²=100 \\  \\

 \sf \implies 8²+(x+5)²=100 \\  \\

 \sf \implies (x+5)²=(100-64)=36=6² \\  \\

 \sf \implies x+5= \pm6 \\  \\

 \sf \implies x+5=6  \: or \: x+5=-6 \\  \\

 \implies  \sf x=1 \: or \: x=-11

 \sf \red{ \: Hence, \: x=1 \: or \: x=-1 \: is \: the \: required \: solution } \\  \\

Similar questions