Math, asked by Mahisingh61, 5 months ago

Find the value of x.

Friends please solve ... nedd urgently.

Attachments:

Answers

Answered by sainiinswag
4

Answer:

Answer i = The value of x = 15

.

Answer ii = The value of x = 30

.

Answer iii = The value of x = 15

Attachments:
Answered by MoodyCloud
13

(i) tan 3x = sin 45° cos 45° + sin 30°

Solution:-

Take R.HS

 \sf \implies sin \: 45\degree \: cos \: 45\degree + sin\degree \\

 \sf \implies \dfrac{1}{\sqrt{2}} \times \dfrac{1}{\sqrt{2}} + \dfrac{1}{2} \\

 \sf \implies \dfrac{1}{2} + \dfrac{1}{2} \\

 \sf \implies \bold{1} \

So,

 \sf \implies tan 3x = 1

We know ,

tan 45° = 1

Now,

 \sf \implies tan 3x = tan 45°

 \sf \implies 3x = 45°

 \sf \implies x = 45°/3

 \sf \implies x = 15°

Therefore,

Value of x is 15°

____________________________________

(ii) cos x = cos 60° cos 30° + sin 60° sin 30°

Solution:-

Take R.H.S

 \sf \implies cos \: 60 \degree \: cos \: 30\degree + sin \: 60\degree \: sin \: 30\degree \\

 \sf \implies \dfrac{1}{2} \times \dfrac{\sqrt{3}}{2} + \dfrac{\sqrt{3}}{2} \times \dfrac{1}{2} \\

 \sf \implies \dfrac{\sqrt{3}}{4} + \dfrac{\sqrt{3}}{4} \\

 \sf \implies \dfrac{\sqrt{3} + \sqrt{3}}{4} \\

 \sf \implies \dfrac{2 \times \sqrt{3}}{4} \\

 \sf \implies \bold{\dfrac{\sqrt{3}}{2}} \\

So,

 \sf \implies cos x = √3/2

We know,

cos 30° = √3/2

Now,

 \sf \implies cos x = cos 30°

 \sf \implies x = 30°

Therefore,

Value of x is 30°.

___________________________________

(iii) sin 2x = sin 60° cos 30° - cos 60° sin 30°

Solution:-

Take R.H.S

 \sf \implies sin \: 60\degree \:cos \: 30\degree - cos \: 60\degree \: sin\:30\degree \\

 \sf \implies \dfrac{\sqrt{3}}{2} \times \dfrac{\sqrt{3}}{2} - \dfrac{1}{2} \times \dfrac{1}{2} \\

 \sf \implies \dfrac{3}{4} - {1}{4} \\

 \sf \implies \dfrac{3 - 1}{4} \\

 \sf \implies \dfrac{2}{4} \\

 \sf \implies \bold{ \dfrac{1}{2} } \\

So,

 \sf \implies sin 2x = 1/2

We know,

sin 30° = 1/2

Now,

 \sf \implies sin 2x = sin 30°

 \sf \implies 2x = 30°

 \sf \implies x = 30°/3

 \sf \implies x = 15°

Therefore,

Value of x is 15°.

Similar questions