Math, asked by ayush13651, 9 months ago

find the value of x given that 2 log↓10 (2 x - 1) = log↓10 2 + log↓10 (2 x+ 3)​

Answers

Answered by vikash201097
2

Answer:

x=5/2,-1/2

Step-by-step explanation:

(2x-1)^{2}=㏒2*(2x+3)

=>(2x-1)^{2}=2*(2x+3)

4x^{2}-4x+1=4x+6

4x^{2}-4x-4x+1-6=0

4x^{2}-8x-5=0

2x(2x-5)+1(2x-5)=0

x=5/2,-1/2

Answered by saounksh
1

Answer:

x =  \frac{5}{2}

Step-by-step explanation:

2 log_{10}(2x - 1)  =  log_{10}(2)  +  log_{10}(2x + 3)

Since log is defined only for positive values

2x - 1  > 0 \: and \: 2x + 3 > 0

or \: x >  \frac{1}{2}  \: and \: x >  -  \frac{3}{2}

or \: x >  \frac{1}{2}

Let us simplify the equation

 log_{10}{(2x - 1)}^{2}  -  log_{10}(2x + 3)  =  log_{10}(2)

 log_{10}( \frac{ {(2x - 1)}^{2} }{2x + 3} )  =  log_{10}(2)

 \frac{ {(2x - 1)}^{2} }{2x + 3}  = 2

 {(2x - 1)}^{2}  = 2(2x + 3)

4 {x}^{2}  - 4x + 1 = 4x + 6

4 {x}^{2}  - 8x - 5 = 0

4 {x}^{2}  - 10x + 2x - 5 = 0

2x(2x - 5) + 1(2x - 5) = 0

(2x - 5)(2x + 1) = 0

x =  \frac{5}{2} or -  \frac{1}{2}

but \: x >  \frac{1}{2}

hence \: x =  \frac{5}{2} \:  is \: the \: solution

Similar questions