Math, asked by jenamadhusmita469, 30 days ago

Find the value of x if (1/5)-^8×(1/5)+⁴=(1/5)-⁴^x​

Answers

Answered by Aryan0123
14

Solution:

  \bigg(\dfrac{1}{5}  \bigg) ^{ - 8}  \times   \bigg(\dfrac{1}{5}  \bigg) ^{4}  =    \bigg(\dfrac{1}{5}  \bigg) ^{ - 4x}  \\  \\

Here, we use this identity

 \pink \star  \:  \purple{ \rm{a^m \times a^n = a^{(m + n)}}} \\

 \green{ \star} \:  \red{ \sf{If \: a^{p} = a^{q},  \: Then \: p = q }} \\  \\

On further Simplifying,

 \dashrightarrow \:  \: \bigg(\dfrac{1}{5} \bigg)^{ - 8 + 4}  =   \bigg(\dfrac{1}{5}  \bigg)^{ - 4x}  \\  \\

Using Second identity,

 \dashrightarrow \: \: \rm{ - 8 + 4 =  - 4x} \\  \\

 \hookrightarrow  \:  \: \rm{ - 4 =  - 4x} \\  \\

 \implies \boxed{ \bf{x =  - 1}} \\  \\

∴ The value of x = -1

\\

Additional information:

\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Do see this answer from brainly website (https://brainly.in/question/41493429) to see the additional information part clearly.

Similar questions