Math, asked by tanmayshejwalkar2608, 1 year ago

find the value of x , if 1/a+b+x=1/a+1?b+1/x

Answers

Answered by amankumaraman11
0

\frac{1}{a+b}+x=\frac{1}{a+1}\\\\x=\frac{1}{a+1}-\frac{1}{a+b}\\\\x=\frac{a+b-a+1}{(a+1)(a+b)}\:=\:\frac{b+1}{(a+1)(a+b)}

Answered by Anonymous
14

1/a+b+x = 1/a+1/b+1/x

1/a+b+x = bx+ax+ab/abx

(a+b+x) (bx+ax+ab) = abx

abx+a²x+a²b+b²x+abx+ab²+bx²+ax²+abx = abx

(a+b)x² + (a²+b²)x + 3abx-abx + ab(a+b) = 0

(a+b)x² + (a²+b²)x + 2abx + ab(a+b) = 0

(a+b)x² + (a²+b²+2ab)x + ab(a+b) = 0

(a+b)x² + (a+b)²x + ab(a+b) = 0

(a+b) [x²+(a+b)x+ab] = 0

(a+b) [x²+ax+bx+ab] = 0

(a+b) [x(x+a)+b(x+a)] = 0

(a+b) [(x+a)(x+b) ] = 0

(x+a)(x+b) = 0/(a+b)

(x+a)(x+b)=0

x = -a and x = -b

Similar questions