find the value of x , if 1/a+b+x=1/a+1?b+1/x
Answers
Answered by
0
Answered by
14
1/a+b+x = 1/a+1/b+1/x
1/a+b+x = bx+ax+ab/abx
(a+b+x) (bx+ax+ab) = abx
abx+a²x+a²b+b²x+abx+ab²+bx²+ax²+abx = abx
(a+b)x² + (a²+b²)x + 3abx-abx + ab(a+b) = 0
(a+b)x² + (a²+b²)x + 2abx + ab(a+b) = 0
(a+b)x² + (a²+b²+2ab)x + ab(a+b) = 0
(a+b)x² + (a+b)²x + ab(a+b) = 0
(a+b) [x²+(a+b)x+ab] = 0
(a+b) [x²+ax+bx+ab] = 0
(a+b) [x(x+a)+b(x+a)] = 0
(a+b) [(x+a)(x+b) ] = 0
(x+a)(x+b) = 0/(a+b)
(x+a)(x+b)=0
x = -a and x = -b
Similar questions