Math, asked by aayush11012005, 1 year ago

Find the value of x if 2(x^2+1/x^2)-9(x+1/x)+14=0​

Answers

Answered by arishali20
0

Step-by-step explanation:

factor this eqn

let X=1

(X-1) is a factor of this eqn

divide eqn by (X-1)

we get (X-1)(___)(____)

Attachments:
Answered by Salmonpanna2022
2

Step-by-step explanation:

 \bf \underline{Solution-} \\

\mathsf{Given :\;\;2\bigg(x^2 + \dfrac{1}{x^2}\bigg) - 9\bigg(x + \dfrac{1}{x}\bigg) + 14 = 0}

\mathsf{\bigg(x^2 + \dfrac{1}{x^2}\bigg)\;can\;be\;written\;as :}

\mathsf{\bigstar\;\; \bigg(x^2 + \dfrac{1}{x^2}\bigg) = \bigg(x + \dfrac{1}{x}\bigg)^2 - 2}

\mathsf{\implies 2\bigg[\bigg(x + \dfrac{1}{x}\bigg)^2 - 2\bigg] - 9\bigg(x + \dfrac{1}{x}\bigg) + 14 = 0}

\mathsf{Let\;us\;take : \bigg(x + \dfrac{1}{x}\bigg) = P}

\mathsf{\implies 2(P^2 - 2) - 9P + 14 = 0}

\mathsf{\implies 2P^2 - 4 - 9P + 14 = 0}

\mathsf{\implies 2P^2 - 9P + 10 = 0}

\mathsf{\implies 2P^2 - 4P - 5P + 10 = 0}

\mathsf{\implies 2P(P - 2) - 5(P - 2) = 0}

\mathsf{\implies (P - 2)(2P - 5) = 0}

\mathsf{\implies P = 2\;\;(or)\;\; P = \dfrac{5}{2}}

\mathsf{But\;we\;took : \bigg(x + \dfrac{1}{x}\bigg) = P}

\underline{\textsf{Case : 1}}

\mathsf{Consider : \bigg(x + \dfrac{1}{x}\bigg) = 2}

\mathsf{\implies \bigg(\dfrac{x^2 + 1}{x}\bigg) = 2}

\mathsf{\implies x^2 + 1 = 2x}

\mathsf{\implies x^2 - 2x + 1 = 0}

\mathsf{\implies (x - 1)^2 = 0}

\mathsf{\implies (x - 1) = 0}

\mathsf{\implies x = 1}

\underline{\textsf{Case : 2}}

\mathsf{Consider : \bigg(x + \dfrac{1}{x}\bigg) = \dfrac{2}{5}}

\mathsf{\implies \bigg(\dfrac{x^2 + 1}{x}\bigg) = \dfrac{5}{2}}

\mathsf{\implies 2(x^2 + 1) = 5x}

\mathsf{\implies 2x^2 - 5x + 2 = 0}

\mathsf{\implies 2x^2 - 4x - x + 2 = 0}

\mathsf{\implies 2x(x - 2) - (x - 2) = 0}

\mathsf{\implies (x - 2)(2x - 1) = 0}

\mathsf{\implies x = 2\;\;(or)\;\; x = \dfrac{1}{2}}

\underline{\textsf{Combining the results of Case : 1 and Case : 2}}

\textsf{The Values of x which satisfy the given Equation are :}

\mathsf{\bigstar\;\;x = 1}

\mathsf{\bigstar\;\;x = 2}

\mathsf{\bigstar\;\;x = \dfrac{1}{2}}

Similar questions