Math, asked by antaniawhite490, 1 year ago

find the value of x if 25x÷2x=5√220.

Answers

Answered by rathore123
14

am taking your question as,

25x2x = 220−−−√5Now, 25x÷ 2x = 25 × 25 × 25 × 25−−−−−−−−−−−−−−−−√5⇒ 25x − x = 2 × 2 × 2 × 2 [am ÷ an = am − n]⇒ 24x = 24⇒ 4x = 4⇒ x = 1

Answered by swethassynergy
4

Correct -Question

Find the value of x if 2^{5x} \div2^{x} =\sqrt[5]{2^{20} }.

Answer:

The value of x if 2^{5x} \div2^{x} =\sqrt[5]{2^{20} } is 1.

Step-by-step explanation:

Given:

Equation 2^{5x} \div2^{x} =\sqrt[5]{2^{20} }.

To Find:

The value of x if 2^{5x} \div2^{x} =\sqrt[5]{2^{20} } .

Solution:

As given- equation 2^{5x} \div2^{x} =\sqrt[5]{2^{20} }.

2^{5x} \div2^{x} =\sqrt[5]{2^{20} }

\frac{2^{5x} }{2^{x} } =(2^{20} )^{\frac{1}{5} }

{2^{5x-x}  = 2^{20\times\frac{1}{5} }

2^{4x} =2^{4}

4x=4

x=1

Thus,the value of x if 2^{5x} \div2^{x} =\sqrt[5]{2^{20} } is 1.

PROJECT CODE #SPJ3

Similar questions