Math, asked by Anonymous, 30 days ago

Find the value of x, if 3 + 2x = 64 ^1/2 + 27^1/3
Please answer fast
I will mark the best answer as brainliest

Answers

Answered by VεnusVεronίcα
8

\bf Given : \rm 3+2x=(64)^{\frac{1}{2}}+(27)^{\frac{1}{3}}

\bf To~ find : \rm The ~value~ of ~x.

\\

\qquad________________

\\

\rm We~ can~ write~ the ~ numbers~ (64)^{\frac{1}{2}}~and~ (27)^{\frac{1}{3}}~ in~ more~ simplified~ form:

~

\rm \qquad\dashrightarrow~ (64)^{\frac{1}{2}}=(8^2)^{\frac{1}{2}}

~

\rm Using~ the~ law:(a^m)^n=(a)^{mn}

~

\qquad\rm\dashrightarrow~(8^{\cancel2})^{\frac{1}{\cancel2}}= \bf8

~

\qquad\rm\dashrightarrow~ (27)^{\frac{1}{3}}=(3^3)^{\frac{1}{3}}

~

\rm Again~ using~ the~ law:(a^m)^n=(a)^{mn}

~

\rm\qquad\dashrightarrow~ (3^{\cancel3})^{\frac{1}{\cancel3}}=\bf 3

~

\rm Now~substituting~ and~ solving:

~

\rm\qquad\dashrightarrow~ 3+2x=8+3

~

\qquad\rm\dashrightarrow~ 3+2x=11

~

\qquad\rm\dashrightarrow~ 2x=11-3

~

\rm\qquad\dashrightarrow~ 2x=8

~

\rm\qquad\dashrightarrow~ x=\cancel{\dfrac{8}{2} }

~

\bf\qquad\dashrightarrow~ x=4

~

\underline{\rm Hence, ~the~value~ of~ x~in~3+2x=(64)^{\frac{1}{3}}+(27)^{\frac{1}{3}}~is~\bf4.}

\\

\qquad________________

~

Note : Swipe the screen from left to right in order to view the answer completely in case you're using your mobile!

Similar questions