Find the value of X if (3/5)^x×(5/3)^2x=125/27
Answers
Answered by
1
Step-by-step explanation:
we have to find the value of x if
(\frac{3}{5})^x\times (\frac{5}{3})^{2x}=\frac{125}{27}
The equation is
(\frac{3}{5})^x\times (\frac{5}{3})^{2x}=\frac{125}{27}
(\frac{5}{3})^{-x}\times (\frac{5}{3})^{2x}=\frac{125}{27}
(\frac{5}{3})^{x}=\frac{125}{27}
(\frac{5}{3})^{x}=(\frac{5}{3})^3
Comparing, we get
x=3
The value of x is 3 i.e x=3
Answered by
1
Answer:
x=3
Step-by-step explanation:
(3/5)^× x (5/3)^2× =125/27
(3/5)^× x (3/5)^_2×=125/27
(3/5)^×_2× =125/27
(3/5)^_×=125/27
(5/3)^×=125/27
:. ×=3
Similar questions