Math, asked by inderjeetkaur81, 9 months ago

find the value of x if:-[(3/7) ³]-²=(3/7) ²^x​

Answers

Answered by Bhuvan2156
3

hope it helps you

thankyou

Attachments:
Answered by Darkrai14
5

Showing results of

\rm \Bigg [ \Bigg ( \dfrac{3}{7} \Bigg )^3 \Bigg ]^{-2} = \Bigg ( \dfrac{3}{7} \Bigg )^{2x}

Solution:-

\rm \implies \Bigg [ \Bigg ( \dfrac{3}{7} \Bigg )^3 \Bigg ]^{-2} = \Bigg ( \dfrac{3}{7} \Bigg )^{2x}

\rm\implies \Bigg ( \dfrac{3}{7} \Bigg )^{3(-2)} = \Bigg ( \dfrac{3}{7} \Bigg )^{2x} \qquad\qquad ...[ since, \ (a^m)^n = a^{mn}]

\rm \implies\Bigg ( \dfrac{3}{7} \Bigg )^{-6} = \Bigg ( \dfrac{3}{7} \Bigg )^{2x}

Bases are same, so they will be eliminated.

\rm\implies -6=2x

\rm\implies x = \dfrac{-6}{2} = -3

\bullet\qquad\bigstar\boxed{\bf x=-3}\bigstar

Hope it helps..

Similar questions