Math, asked by abhijeet6az, 3 months ago

find the value of x if 4^x + 6^x = 9^x​

Answers

Answered by BrainlyIAS
5

Question :

\bullet\ \quad  \sf{\red{4^x+6^x=9^x}}

Solution :

\sf 4^x+6^x=9^x

Divide both sides of the eq. with 4ˣ .

\longrightarrow \sf \dfrac{(4^x+6^x)}{4^x}=\dfrac{9^x}{4^x}

\longrightarrow \sf \dfrac{4^x}{4^x}+\dfrac{6^x}{4^x}=\dfrac{9^x}{4^x}

\longrightarrow \sf 1+\left(\dfrac{6}{4}\right)^x=\left(\dfrac{9}{4}\right)^x

\longrightarrow \sf 1+\left(\dfrac{3}{2}\right)^x=\left(\left(\dfrac{3}{2}\right)^2\right)^x

\longrightarrow \sf 1+\left(\dfrac{3}{2}\right)^x=\left(\dfrac{3}{2}\right)^{2x}

\longrightarrow \sf \left(\left(\dfrac{3}{2}\right)^{x}\right)^2-\left(\dfrac{3}{2}\right)^x-1=0

Let  \sf \left( \dfrac{3}{2}\right)^x=p ,

\longrightarrow\ \sf p^2-p-1=0

It's a quadratic eq. of p in the form ax² + bx + c ,

where , a = 1 , b = - 1 , c = - 1

\longrightarrow\ \sf p= \dfrac{-b \pm \sqrt{b^2-4ac}}{2a}

\longrightarrow\ \sf p= \dfrac{-(-1) \pm \sqrt{(-1)^2-4(1)(-1)}}{2(1)}

\longrightarrow\ \sf p= \dfrac{1 \pm \sqrt{1+4}}{2}

\longrightarrow\ \sf p= \dfrac{1 \pm \sqrt{5}}{2}

For positive solution ,

\longrightarrow\ \sf p= \dfrac{1 + \sqrt{5}}{2}

\longrightarrow\ \sf \left( \dfrac{3}{2}\right)^x= \dfrac{1 + \sqrt{5}}{2}

Applying logarithm ,

\longrightarrow\ \sf \ln \left( \dfrac{3}{2}\right)^x= \ln \left(\dfrac{1 + \sqrt{5}}{2} \right)

\bullet\ \quad \sf \orange{\ln a^b=b \ln a}

\longrightarrow\ \sf x\ \ln \left( \dfrac{3}{2}\right)= \ln \left(\dfrac{1 + \sqrt{5}}{2} \right)

\bullet\ \quad \sf \green{\ln \dfrac{a}{b}=\ln a-\ln b}

\longrightarrow\ \sf \pink{x= \dfrac{\ln (1 + \sqrt{5}) - \ln 2}{ \ln 3 - \ln 2}}

★ ═════════════════════ ★

Answered by EmperorSoul
0

Question :

\bullet\ \quad  \sf{\red{4^x+6^x=9^x}}

Solution :

\sf 4^x+6^x=9^x

Divide both sides of the eq. with 4ˣ .

\longrightarrow \sf \dfrac{(4^x+6^x)}{4^x}=\dfrac{9^x}{4^x}

\longrightarrow \sf \dfrac{4^x}{4^x}+\dfrac{6^x}{4^x}=\dfrac{9^x}{4^x}

\longrightarrow \sf 1+\left(\dfrac{6}{4}\right)^x=\left(\dfrac{9}{4}\right)^x

\longrightarrow \sf 1+\left(\dfrac{3}{2}\right)^x=\left(\left(\dfrac{3}{2}\right)^2\right)^x

\longrightarrow \sf 1+\left(\dfrac{3}{2}\right)^x=\left(\dfrac{3}{2}\right)^{2x}

\longrightarrow \sf \left(\left(\dfrac{3}{2}\right)^{x}\right)^2-\left(\dfrac{3}{2}\right)^x-1=0

Let  \sf \left( \dfrac{3}{2}\right)^x=p ,

\longrightarrow\ \sf p^2-p-1=0

It's a quadratic eq. of p in the form ax² + bx + c ,

where , a = 1 , b = - 1 , c = - 1

\longrightarrow\ \sf p= \dfrac{-b \pm \sqrt{b^2-4ac}}{2a}

\longrightarrow\ \sf p= \dfrac{-(-1) \pm \sqrt{(-1)^2-4(1)(-1)}}{2(1)}

\longrightarrow\ \sf p= \dfrac{1 \pm \sqrt{1+4}}{2}

\longrightarrow\ \sf p= \dfrac{1 \pm \sqrt{5}}{2}

For positive solution ,

\longrightarrow\ \sf p= \dfrac{1 + \sqrt{5}}{2}

\longrightarrow\ \sf \left( \dfrac{3}{2}\right)^x= \dfrac{1 + \sqrt{5}}{2}

Applying logarithm ,

\longrightarrow\ \sf \ln \left( \dfrac{3}{2}\right)^x= \ln \left(\dfrac{1 + \sqrt{5}}{2} \right)

\bullet\ \quad \sf \orange{\ln a^b=b \ln a}

\longrightarrow\ \sf x\ \ln \left( \dfrac{3}{2}\right)= \ln \left(\dfrac{1 + \sqrt{5}}{2} \right)

\bullet\ \quad \sf \green{\ln \dfrac{a}{b}=\ln a-\ln b}

\longrightarrow\ \sf \pink{x= \dfrac{\ln (1 + \sqrt{5}) - \ln 2}{ \ln 3 - \ln 2}}

★ ═════════════════════ ★

Similar questions