Math, asked by yadavshivangi888, 4 months ago

find the value of x if AB||CD​

Attachments:

Answers

Answered by ashpak263gmailcom
10

Answer:

hii mate here is your answer

Step-by-step explanation:

Given

The lines AB & CD are parallel to each other.

AE and CE meet at E.

Angle OAB=108°

Angle OCD=112°.

To find out

Angle AEC=?

SOLUTION

the line EF is drawn such that

EF II AB

I.e EF II CD therefore AB II CD.

Now the sum of the same side internal angles=180

therefore Angle AEF-Angle EAB

=180°-108°

=72° &

Angle CEF=180°

=180°-112°

=68°

Therefore Angle AEC=x= Angle AEF+Angle CEF

=72°+68°=140°

HOPE ITS HELP U

Answered by brainlyofficial11
6

Given :-

  • ∠BAO = 130°
  • ∠DCO = 120°
  • AB || CD

To Find :-

  • value of x ?

Solution :-

construction : Draw a line PQ || AB

here, AB || PQ then,

∠BAO + ∠QOA = 180° (adjacent angles)

 \bold{ : \implies  130 \degree +   ∠QOA = 180 \degree} \\  \\  \bold{:  \implies  ∠QOA = 180 \degree \:  - 130 \degree} \\  \\  \bold{: \implies  ∠QOA = 50 \degree } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, ∠QOA = 50°

we have AB || PQ and AB || CD

➪ PQ || CD

then,

∠DCO + ∠QOC = 180° (adjacent angles)

 \bold{: \implies120 \degree +   ∠QOC = 180 \degree } \\  \\  \bold{:  \implies ∠QOC = 180 \degree - 120 \degree } \\  \\  \bold{: \implies  ∠QOC = 60 \degree } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, ∠QOC = 60°

now, we have to find value of x

∠x = ∠QOA + ∠QOC

 \bold{:  \implies  ∠x = 50 \degree + 60 \degree} \\  \\  \bold{:  \implies ∠x = 110 \degree } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, value of x is 110

Attachments:
Similar questions