Math, asked by microarun2016, 2 days ago

find the value of x, if ABCD is a parrelogram​

Attachments:

Answers

Answered by Teluguwala
21

Given :-

  • ABCD is a Parrallelogram
  • ∠p is 60°

To Find :-

  • What is the value of x

Solution :-

Given :

  • ∠p = 60°

Then,

 \sf⇝ \: ∠c \:  =  \: 180 \degree - 60 \degree \:  \:  \:  \:  \: \bigg (Adjacent \: angles \bigg)

 \sf \red{⇝ }\: ∠c \:  =  \:  \bf{120 \degree}

So,

 \bf \red{⇝ \: ∠a \:  =  \: 120 \degree  }\:  \:  \:  \:  \: \sf{ \bigg (Vertically \:  opposite\: angles \bigg)}

Hence, x = 120° .

 \:

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Answered by pradhanmadhumita2021
10

Given :-

  • ABCD is a Parrallelogram
  • ∠p is 60°

To Find :-

  • What is the value of x

Solution :-

  • ∠p = 60°

Then,

\sf \pink{⇝ \: ∠c \: = \: 180 \degree - 60 \degree } \blue{ \bigg  (Adjacent \: angles \bigg)} \\\sf \pink{⇝  ∠c \: = \: \bf{120 \degree}}

So,

\bf \pink{⇝ \: ∠a \: = \: 120 \degree }\: \: \: \: \: \sf \blue{{ \bigg (Vertically \: opposite\: angles \bigg)}}</p><p>

Hence, x = 120° .

Similar questions