Math, asked by mehreenmehreen8781, 7 months ago

Find the value of x if cos2x = sin 60° cos 30° - cos 60° sin 30°.

Answers

Answered by Sk218
3

Answer:

see attached file for your answer

Attachments:
Answered by Darkrai14
3

We know that,

\dagger\quad \bf\sin 60^{\circ} = \dfrac{\sqrt{3}}{2} = \cos 30^{\circ}

\dagger\quad \bf\sin 30^{\circ} = \dfrac{1}{2} = \cos 60^{\circ}

Hence, substituting the values we get,

\dashrightarrow\rm \cos 2x = \sin 60^{\circ} \cos 30^{\circ} - \cos 60^{\circ} \sin 30^{\circ}

\dashrightarrow\rm \cos 2x = \dfrac{\sqrt{3}}{2} \times \dfrac{\sqrt{3}}{2} - \dfrac{1}{2}\times \dfrac{1}{2}

\dashrightarrow\rm \cos 2x = \dfrac{(\sqrt{3})^2}{(2)^2}- \dfrac{1}{4}

\dashrightarrow\rm \cos 2x = \dfrac{3}{4}- \dfrac{1}{4}

\dashrightarrow \rm\cos 2x = \dfrac{2}{4}

\dashrightarrow\rm \cos 2x = \dfrac{1}{2}

Since, cos 60° = 1/2, hence,

\dashrightarrow \rm\cos 2x = \dfrac{1}{2} = \cos 60^{\circ}

\dashrightarrow \rm\cos 2x = \cos 60^{\circ}

\dashrightarrow\rm 2x = 60^{\circ}

\dashrightarrow \rm x = \dfrac{60^{\circ}}{2}

\dashrightarrow \boxed{ \bf x =30^{\circ}}

Similar questions