Math, asked by hallujune, 8 months ago

Find the value of x if,cosec(90°-theta)/sin(90°-theta)- x/tan(90°-theta)=1
Please answer my question...its urgent!!​

Attachments:

Answers

Answered by DevyaniKhushi
12

 \frac{ \cosec(90 -  \theta) }{ \sin(90 -  \theta) }  -  \frac{x}{ \tan(90 -\theta ) }  = 1 \\  \\  =  >  \frac{ \ \sec(\theta)  }{ \cos(\theta) }  -  \frac{x}{ \cot(\theta) }  = 1 \\ \\  \small{ \rm{  \bigg\{swicthing \:  positions \:  \: of \: \: 1  \:  \: \& \: \:  \frac{x}{\cot(\theta)} \bigg\}}} \\  \\  =  > \frac{ \ \sec(\theta)  }{ \cos(\theta) }  - 1 =  \frac{x}{ \cot(\theta)}  \\ \small{ \rm{ \{transposing \:  \:  \cot(\theta) \:  \: to \:  \: LHS \}}} \\  =  >  \cot(\theta) \bigg \{\frac{ \ \sec(\theta)  }{ \cos(\theta) }  - 1   \bigg\} = x \\  \small{ \text{   \{ switching \:  \:the \:  \: LHS \:  \:  \& \:  \:RHS\}}} \\  =  > x = \cot(\theta) \bigg \{ \frac{ \frac{1}{\cos(\theta)} }{\cos(\theta)} - 1 \bigg\}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \because \:  \:  \sec \theta =  \frac{1}{\cos \theta} \\  \\  =  > x =  \frac{\cos(\theta)}{\sin(\theta)} \bigg \{ \frac{1}{ { \cos}^{2} \theta }   - 1 \bigg\}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\because \:  \: \cot \theta =  \frac{ \cos \theta}{\sin \theta}   \\  \\  \small{ \rm{ \bigg\{ perfoming \:  \: multiplictions \bigg\}}} \\  \\  =  > x =  \frac{1}{\sin(\theta)\cos(\theta)}  -  \frac{\cos(\theta)}{\sin(\theta)}   \\ \small{ \text{ \{ taking \:  \:  \:  \: of \:  \: denominators\}}}  \\  =  >  x = \frac{1 - \cos(\theta) \cos(\theta)}{ \sin(\theta)\cos(\theta)}  \\  \\  =  > x =  \frac{1 -  { \cos}^{2} \theta }{\sin(\theta)\cos(\theta)}  \\  \\  =  > x =  \frac{{\sin}^{2} \theta}{\sin(\theta)\cos(\theta)}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \{\because \:  \:1 -  { \cos}^{2} \theta =  { \sin}^{2}   \theta \}\\ \small{ \rm{ \{ rewriting \: {\sin}^{2}   \theta \: as \: \sin(\theta) \times \sin(\theta) \: \}}} \\  =  > x =  \frac{\sin(\theta)\cancel{\sin(\theta)}}{\cancel{\sin(\theta)}\cos(\theta)}   \\  \\  =  > x =  \frac{ \sin(\theta)}{ \cos(\theta)}  \\  \\  =  > x = \pink{ \tan( \theta) } \\

Similar questions