Math, asked by gouthamkesav, 8 months ago

Find the value of x, if log (9/32) to the base x = -(1/8)​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{log\,_{x}\left(\dfrac{9}{32}\right)=-\dfrac{1}{8}}

\underline{\textbf{To find:}}

\textsf{The value of x}

\underline{\textbf{Solution:}}

\underline{\textbf{Concept used:}}

\boxed{\mathsf{N=a^x\;\;\iff\;\;log\,_{a}N=x}}

\mathsf{Consider,}

\mathsf{log\,_{x}\left(\dfrac{9}{32}\right)=-\dfrac{1}{8}}

\textsf{Convert this into exponential form, we get}

\mathsf{(x)^{\dfrac{-1}{8}}=\dfrac{9}{32}}

\implies\mathsf{\dfrac{1}{x^{\dfrac{1}{8}}}=\dfrac{9}{32}}

\implies\mathsf{x^{\dfrac{1}{8}}=\dfrac{32}{9}}

\implies\boxed{\mathsf{x=\left(\dfrac{32}{9}\right)^8}}

\underline{\textbf{Find more:}}

Logx+1(x^2+x-6)^2 =4

https://brainly.in/question/5091717  

Similar questions