Math, asked by katikayusuf2005, 11 months ago

Find the value of x if
 log_{ \frac{1}{3} }( {x}^{2}  + 8)  =  - 2

Answers

Answered by Anonymous
7

Answer :-

x = + 1 or x = - 1

Solution :-

 \displaystyle \implies log_{ \frac{1}{3} }( {x}^{2}  + 8) =  - 2

Wrinting it in exponential form

 \displaystyle \implies \bigg( \frac{1}{3}  \bigg)^{ - 2}  =  {x}^{2}  + 8

[ Because log_a N = x then a^x = N ]

 \displaystyle \implies (3)^{2}  =  {x}^{2}  + 8

[ Because 1 / a^( - n ) = a^n ]

 \displaystyle \implies 9 =  {x}^{2}  + 8

 \displaystyle \implies 9  - 8=  {x}^{2}

 \displaystyle \implies 1=  {x}^{2}

 \displaystyle \implies {x}^{2}  = 1

 \displaystyle \implies x =  \sqrt{1}

 \displaystyle \implies x =   \pm1

Therefore the value of x is 1 or - 1.

Similar questions