Math, asked by ITzBrainlyGuy, 1 year ago

find the value of x if(x√x)^x=x^x√x​

Attachments:

Answers

Answered by Anonymous
7

Answer:

please refer to the attachment

I hope it would help you

thank you.

Attachments:
Answered by Anonymous
10

\underline{\red{ANSWER}}

\boxed{\rm{\pink{x=\frac{9}{4}}}}

\underline{\underline{\mathbb{EXPLANATION}}}

\implies{\rm{\left(x\sqrt{x}\right)^x=x^{x\sqrt{x}}}}

\implies{\rm{\left(x\times\:x^{\frac{1}{2}}\right)^x=x^{x\times\:x^{\frac{1}{2}}}}}

\implies{\rm{\left(x^{1+\frac{1}{2}}\right)^x=x^{x^{1+\frac{1}{2}}}}}

\implies{\rm{\left(x^{\frac{3}{2}}\right)^x=x^{x^{\frac{3}{2}}}}}

\underline{\boxed{\red{\rm{Now\:Compare\:Powers\:Of\:x\:We\:Have}}}}

\implies{\rm{\frac{3x}{2}=x^{\frac{3}{2}}}}

\implies{\rm{x\times\:x^{\frac{-3}{2}}=\frac{2}{3}}}

\implies{\rm{x^{1-\frac{3}{2}}=\frac{2}{3}}}

\implies{\rm{x^{\frac{-1}{2}}=\frac{2}{3}}}

\implies{\rm{\frac{3}{2}=x^{\frac{1}{2}}}}

\implies{\rm{\frac{3}{2}=\sqrt{x}}}

\underline{\underline{\red{\rm{SQUARING\:ON\: BOTH\:SIDES\:WE\:HAVE}}}}

\implies{\rm{x=\frac{9}{4}}}

\therefore{\rm{x=\frac{9}{4}}}

Similar questions