Find the value of x in: 1.3:1.1::X:8.8
Answers
Answer:
10.4
Step-by-step explanation:
you have to solve it as:-
1.3/1.1=x/8.8
1.3*8=x
therefore x=10.4
Answer:
Given, log₈x = 3 1/3
or, log₈x = 10 / 3
or, logₑx / logₑ8 = 10 / 3
or, logₑx = (10 / 3) * logₑ8
or, logₑx = (10 / 3) * logₑ(2³)
or, logₑx = (10 / 3) * 3 * logₑ2
or, logₑx = 10 * logₑ2
or, logₑx = logₑ(2¹⁰)
or, x = 2¹⁰
or, x = 1024
∴ the required solution is x = 1024
Rules:
• logₐb = logᵣb / logᵣa
• log(aᵇ) = b * loga
• logₛa = logₛb gives a = b
# giving another solution with another question:
\displaystyle \mathsf{Now,\:log_{\sqrt{8}}x=3\frac{1}{3}}Now,log
8
x=3
3
1
\displaystyle \mathsf{or,\:\frac{log_{e}x}{log_{e}\sqrt{8}}=\frac{10}{3}}or,
log
e
8
log
e
x
=
3
10
\mathsf{or,\:log_{e}x=\frac{10}{3}\times log_{e}\sqrt{8}}or,log
e
x=
3
10
×log
e
8
\displaystyle \mathsf{or,\:log_{e}x=\frac{10}{3}\times log_{e}(2^{\frac{3}{2}})}or,log
e
x=
3
10
×log
e
(2
2
3
)
\displaystyle \mathsf{or,\:log_{e}x=\frac{10}{3}\times \frac{3}{2}\times log_{e}2}or,log
e
x=
3
10
×
2
3
×log
e
2
\displaystyle \mathsf{or,\:log_{e}x=5\times log_{e}2}or,log
e
x=5×log
e
2
\displaystyle \mathsf{or,\:log_{e}x=log_{e}(2^{5})}or,log
e
x=log
e
(2
5
)
\displaystyle \mathsf{or,\:x=2^{5}=32}or,x=2
5
=32
∴ the required solution is x = 32