Math, asked by namamisharma37, 7 months ago

Find the value of x in: 1.3:1.1::X:8.8​

Answers

Answered by iamjasleen2000
2

Answer:

10.4

Step-by-step explanation:

you have to solve it as:-

1.3/1.1=x/8.8

1.3*8=x

therefore x=10.4

Answered by dishanta81
5

Answer:

Given, log₈x = 3 1/3

or, log₈x = 10 / 3

or, logₑx / logₑ8 = 10 / 3

or, logₑx = (10 / 3) * logₑ8

or, logₑx = (10 / 3) * logₑ(2³)

or, logₑx = (10 / 3) * 3 * logₑ2

or, logₑx = 10 * logₑ2

or, logₑx = logₑ(2¹⁰)

or, x = 2¹⁰

or, x = 1024

∴ the required solution is x = 1024

Rules:

• logₐb = logᵣb / logᵣa

• log(aᵇ) = b * loga

• logₛa = logₛb gives a = b

# giving another solution with another question:

\displaystyle \mathsf{Now,\:log_{\sqrt{8}}x=3\frac{1}{3}}Now,log

8

x=3

3

1

\displaystyle \mathsf{or,\:\frac{log_{e}x}{log_{e}\sqrt{8}}=\frac{10}{3}}or,

log

e

8

log

e

x

=

3

10

\mathsf{or,\:log_{e}x=\frac{10}{3}\times log_{e}\sqrt{8}}or,log

e

x=

3

10

×log

e

8

\displaystyle \mathsf{or,\:log_{e}x=\frac{10}{3}\times log_{e}(2^{\frac{3}{2}})}or,log

e

x=

3

10

×log

e

(2

2

3

)

\displaystyle \mathsf{or,\:log_{e}x=\frac{10}{3}\times \frac{3}{2}\times log_{e}2}or,log

e

x=

3

10

×

2

3

×log

e

2

\displaystyle \mathsf{or,\:log_{e}x=5\times log_{e}2}or,log

e

x=5×log

e

2

\displaystyle \mathsf{or,\:log_{e}x=log_{e}(2^{5})}or,log

e

x=log

e

(2

5

)

\displaystyle \mathsf{or,\:x=2^{5}=32}or,x=2

5

=32

∴ the required solution is x = 32

Similar questions