Math, asked by kirtijangid0067, 4 months ago

find the value of x in (1/3)^3×(1/3)^(-6)=(1/3)^(2x-1)


Anonymous: hi kirti
Anonymous: sneha here !
Anonymous: if you still have any query regarding to the answer then please write in comments. :)

Answers

Answered by ms8353587
4

Answer:

we given

(1/3)^3 * (1/3)^(-6) = (1/3)^(2x-1)

(1/3)^(-3) = (1/3)^(2x-1)

comparing both sides, we get

-3 = 2x -1

-3+1 = 2x

-2 = 2x

x = -1

Answered by Anonymous
41

\begin{gathered} \begin{gathered}\begin{gathered}\\\;\underbrace{\underline{\sf{Understanding\; the \; Question:-}}}\end{gathered}\end{gathered} \end{gathered}

Here the Concept of exponents and power has been used. Here we see that the bases are same so by equating exponents of both sides we can get the answer .

Let's do it !!

_______________________________________________

★ Question :-

find the value of x in

 \tt  \bigg(\dfrac{1}{3} \bigg)  ^{3}  \times  \bigg( \dfrac{1}{3} \bigg)  ^{ - 6}  =   \bigg(\dfrac{1}{3}  \bigg) ^{2x - 1}

_______________________________________________

★ Solution :-

\begin{gathered}\\\;\bf{\rightarrow\;\;\green{\bigg(\dfrac{1}{3} \bigg)  ^{3}  \times  \bigg( \dfrac{1}{3} \bigg)  ^{ - 6}  =   \bigg(\dfrac{1}{3}  \bigg) ^{2x - 1} }}\end{gathered}

So we can see that all the bases are same so , by equating exponents of both side we get ,

\begin{gathered}\\\;\bf{\rightarrow\;\;\purple{ {3}  -   {  6}  =   {2x - 1} }}\end{gathered}

\begin{gathered}\\\;\bf{\rightarrow\;\;{ { - 3}   + 1 =   2x  }}\end{gathered}

\begin{gathered}\\\;\bf{\rightarrow\;\;{  - 2=   2x  }}\end{gathered}

\begin{gathered}\\\;\bf{\rightarrow\;\;{  x=    \dfrac{ - 2}{2} }}\end{gathered}

\begin{gathered}\\\;\bf{\rightarrow\;\;\blue{ - 1 }}\end{gathered}

_______________________________________________

Let's check that our answer is correct or incorrect !

Given equation

\begin{gathered}\\\;\bf{\rightarrow\;\;\red{\bigg(\dfrac{1}{3} \bigg)  ^{3}  \times  \bigg( \dfrac{1}{3} \bigg)  ^{ - 6}  =   \bigg(\dfrac{1}{3}  \bigg) ^{2x - 1} }}\end{gathered}

after putting -1 in the place of x we get

\begin{gathered}\\\;\bf{\rightarrow\;\;\orange{\bigg(\dfrac{1}{3} \bigg)  ^{3}  \times  \bigg( \dfrac{1}{3} \bigg)  ^{ - 6}  =   \bigg(\dfrac{1}{3}  \bigg) ^{2 \times  (- 1)- 1} }}\end{gathered}

\begin{gathered}\\\;\bf{\rightarrow\;\;{\bigg(\dfrac{1}{3} \bigg)  ^{3}  \times  \bigg( \dfrac{1}{3} \bigg)  ^{ - 6}  =   \bigg(\dfrac{1}{3}  \bigg) ^{ - 2- 1} }}\end{gathered}

\begin{gathered}\\\;\bf{\rightarrow\;\;{\bigg(\dfrac{1}{3} \bigg)  ^{3}  \times  \bigg( \dfrac{1}{3} \bigg)  ^{ - 6}  =   \bigg(\dfrac{1}{3}  \bigg) ^{ - 3 } }}\end{gathered}

Now let's make the power positive ,

\begin{gathered}\\\;\bf{\rightarrow\;\;{\bigg(\dfrac{1}{3} \bigg)  ^{3}  \times  \bigg( \dfrac{3}{1} \bigg)  ^{6}  =   \bigg(\dfrac{3}{1}  \bigg) ^{ 3 } }}\end{gathered}

Now we want to check that our answer is correct or not therefore first we will calculate the value of LHS and then the value of RHS

Therefore ,

LHS =

\begin{gathered}\\\;\bf{\rightarrow\;\;{ \pink{\bigg (\dfrac{1}{3} \bigg)  ^{3}  \times  \bigg( \dfrac{3}{1} \bigg)  ^{6} } }}\end{gathered}

\begin{gathered}\\\;\bf{\rightarrow\;\;{\bigg (\dfrac{1}{27} \bigg)   \times  \bigg( \dfrac{729}{1} \bigg)  } }\end{gathered}

\begin{gathered}\\\;\bf{\rightarrow\;\;{\bigg (\dfrac{1}{ \cancel{27}} \bigg)   \times  \bigg( \dfrac{ \cancel{729}}{1} \bigg)   }= \green{}  \green{ \dfrac{27}{1} } }\end{gathered}

RHS =

\begin{gathered}\\\;\bf{\rightarrow\;\;{ \pink{\bigg (\dfrac{3}{1} \bigg)  ^{3}} }}\end{gathered}

\begin{gathered}\\\;\bf{\rightarrow\;\;{ {\bigg (\dfrac{3 \times 3 \times 3}{1 \times 1 \times 1} \bigg)  =  \green{ \dfrac{27}{1} }} }}\end{gathered}

hence ,

\begin{gathered}\\\;\bf{\rightarrow\;\;{ { \green{ \dfrac{27}{1} =  \dfrac{27}{1}  }} }}\end{gathered}

LHS = RHS , hence our answer is correct .

\: \: \boxed{\boxed{\bf{\mapsto \: \: \: hence , The \; value \: of \: x \: =  \blue{\underline{-1}}}}}


kirtijangid0067: hi sneha
Anonymous: thanks kirti for brainlist ! :)
Anonymous: do you like the answer ?
Similar questions