Math, asked by chaitanya5555, 11 months ago

Find the value of x in log(x+3) +log(x-3) =log(72)​

Answers

Answered by Anonymous
11

\huge\tt{\red{\underline{Given:}}}

log_{10}^{x+3}+log_{10}^{x-3}=log_{10}^{72}

\huge\tt{\red{\underline{To\:\:Find:}}}

★The value of x.

\huge\tt{\red{\underline{Concept\:\:Used:}}}

★We would use the formulas related to logarithms.

\huge\tt{\red{\underline{Answer:}}}

We have,

\implies log_{10}^{x+3}+log_{10}^{x-3}=log_{10}^{72}

\implies log_{10}^{(x+3) (x-3) }=log_{10}^{72}

\large\green{\boxed{log_{a}^{b}+log_{a}^{c}=log_{a}^{bc}}}

\implies log_{10}^{x^{2}-3^{2}}=log_{10}^{72}

\large\purple{\boxed{a^{2}-b^{2}=(a+b)(a-b)}}

\implies log_{10}^{x^{2}-9}=log_{10}^{72}

Eliminating log on both sides, we have:

\implies\cancel{ log_{10}}^{x^{2}-9}=\cancel{log_{10}}^{72}

\implies x^{2}-9=72

\implies x^{2}=(72+9)

\implies x^{2}=81

\implies x^{2}=9^{2}

{\underline{\boxed{\red{x=9}}}}

Therefore the value of x is 9.

Similar questions