Math, asked by lavanis4updrg6a, 1 year ago

Find the value of x in
3 \div x - 1 + 1 \div x + 1 = 1 \div 2
Where x Not equal to 0,1,-1​

Attachments:

Answers

Answered by jekkoi46
1

\frac{3}{x-1}+\frac{1}{x+1}=\frac{1}{2}

\frac{3(x+1)}{(x-1)(x+1)}+\frac{x-1}{(x-1)(x+1)}=\frac{1}{2}

\frac{3x+3+x-1}{x^{2}-1}=\frac{1}{2}

\frac{4x+2}{x^{2}-1}=\frac{1}{2}

\frac{4x+2}{x^{2}-1}-\frac{1}{2}

\frac{8x+4}{2(x^{2}-1)}-\frac{x^{2}-1}{2(x^{2}-1)}=0

\frac{-x^{2}+8x+5}{2(x^{2}-1)}=0

we get

-x^{2}+8x+5=0

x^{2}-8x-5=0

x^{2}-8x=5

x^{2}-8x+16=5+16

(x-4)^{2}=21

(x-4)=±\sqrt{21}

x_{1}=4+\sqrt{21}

x_{2}=4-\sqrt{21}

Similar questions