Math, asked by mansi5719, 4 months ago

Find the value of x in the following :​

Attachments:

Answers

Answered by Anonymous
15

Solution:-

   \sf {\underline{ ★According \: to \: the \: question: }} \:  \:  {\boxed{ {5}^{x} \times  {5}^{ - 8}   =  {5}^{ - 3} }} \\  \\  \tt ⟼so \: here \: we \: use \: the \: law :  \:  \pink{ {a}^{m}  \times  {a}^{n}  =  {a}^{m + n} } \\  \\  \sf \blue{★let's \: start : } \:  \: \:    \:  \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ :  ⟹  \sf {5}^{x}   \times   {5}^{ - 8}  =  {5}^{ - 3}  \\  \\ : ⟹  \sf  {5}^{x - 8}  =  {5}^{ - 3}  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf \: : ⟹ \sf x - 8 =  - 3 \:  \:  \:  \:  \:  \:  \\  \\  \sf: ⟹x =  - 3 + 8 \:  \:  \:  \\  \\  \sf: ⟹x =  + 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\blue{\underline{\boxed{\purple{\sf{\therefore \:x=5}}}}}

hope this helps.!!

Answered by MrImpeccable
16

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

Given:

  •  5^x \times 5^{-8} = 5^{-3}

To Find:

  • Value of x

Solution:

 5^x \times 5^{-8} = 5^{-3} \\ According\:to\:laws\:of\:exponents, \\ a^x \times a^y => a^{x+y} \\ So,\\ 5^x \times 5^{-8} = 5^{-3} \\ \implies 5^{x + (-8)} = 5^{-3} \\ \implies 5^{x-8} = 5^{-3} \\ As\:the\:bases\:are\:same,\:we\:compare\:the\:powers, \\ \implies x - 8 = -3 \\ \implies x = -3 + 8 \\ \implies \bold{x = -5}

Concept used:

  •  a^x \times a^y => a^{x+y}

Hope it helps!

Similar questions