Math, asked by rk1252400, 1 month ago

Find the value of x in the following

Attachments:

Answers

Answered by Anonymous
3

Answer:

  • x = 2

Step-by-step explanation:

In the given question, we have to find the value of x. To solve this problem, we will apply the exponential rule according to which:

‎ ‎ ‎

➝ a^m × a^n = a^(m+n)

➝ a^m / a^n = a^(m-n)

‎ ‎ ‎

 \sf  : \implies  \dfrac{5^{3x}  \times 25}{5^{x}  } =  {5}^{3}  \times 125

 \sf  : \implies  \dfrac{5^{3x}  \times (5 \times 5) }{5^{x}  } =  {5}^{3}  \times (5 \times 5 \times 5)

 \sf  : \implies  \dfrac{5^{3x}  \times 5 ^{2} }{5^{x}  } =  {5}^{3}  \times5 ^{3}

‎ ‎ ‎

Apply division rule of exponents:

 \sf  : \implies  {5^{3x - x}  \times 5 ^{2} } =  {5}^{3}  \times5 ^{3}

 \sf  : \implies  {5^{2x}  \times 5 ^{2} } =  {5}^{3}  \times5 ^{3}

‎ ‎ ‎

Apply multiplication rule :

 \sf  : \implies  {5^{2x + 2} } = 5 ^{3 + 3}

 \sf  : \implies  {5^{2x + 2} } = 5 ^{6}

‎ ‎ ‎

Now since base is same, we can compare exponents

 \sf  : \implies {2x + 2} ={6}

 \sf  : \implies {2x } ={6 - 2}

 \sf  : \implies {2x } ={4}

 \sf  : \implies {x } = \dfrac{4}2

  \large\pink{ \boxed{ \sf  : \implies  {x } = 2}}

‎ ‎ ‎

Hence x = 2.

Similar questions