Math, asked by shagufta12384, 3 months ago

Find the value of x in the following figure ...




Attachments:

Answers

Answered by SweetLily
11

 {\mathtt{ \underline{ \large{Concept \:  used -}}}}

⚡Here the concept of Pythagoras Therom is used. In this question we have to find the value of x or BC. Two right triangles are given. ∆ BAC have leg of 12 cm and hypotenuse of 13 cm. And in ∆ EDC leg is of length 6 cm and hypotenuse as 10cm.

⚡First find the base of both the triangles using Pythagoras formula and add them. We will get that value of x.

----------------------------------------------------

{\mathtt{ \underline{ \large{Formula \:  used }}}}

{\underline{\boxed{\bold{\orange{hypotenuse² = Leg ²+Base²}}}}}

----------------------------------------------------

{\mathtt{ \underline{ \large{Solution}}}}

 \mathtt{Let \:  us \:  Assume  \: ∆ ABC }

Applying Pythagoras formula

 \to{\bold \color{blue}{AC² =AB² + BC²}}

\sf{\implies 13² = 12² + BC²} \\  \\ \sf{\implies 13² - 12² = BC²} \\  \\\sf{\implies 169 -144 = BC²} \\  \\ \sf{\implies 25 = BC²} \\  \\ \sf{\implies\color{red}BC²= 5 cm }\\ \\

_______________________

 \mathtt{Similarly,  \: Let  \: us \:  assume \:  ∆ EDC}

Applying Pythagoras formula

 \bold{ \to \: { \pink{EC² =ED² + DC²}}}

 \sf{\implies 10²=6²+DC²} \\ \\ \sf {\implies 100 = 36 + DC²} \\ \\\sf{\implies 100-36 = DC² }\\ \\\sf{\implies 64 = DC²}\\ \\ \sf{\implies \color{lightblue} DC = 8 cm}\\

_______________________

From the above attached figure we can clearly see that :-

 \bold{ \to \color{green}BC + CD = x}

so Substitute the value of BC & CD to find the value of x

  \sf{\to X = 8+ 5  }\\  \\ \sf{ \to \: X= 13 cm}

 \mathtt{\therefore the \:  value \:  of \:  x \:  is \:  13 cm.}

----------------------------------------------------

Attachments:
Similar questions