Math, asked by propudg180, 7 months ago

Find the value of x in the given figure

50°
71°
61°
121°​

Attachments:

Answers

Answered by yash10675573
6

Answer:

71 degree

x + 50 = 121 since alternate angles

x = 121-50

= 71

Answered by mohammadmohibjamal
3

Answer:-

x = 71°

Step-by-step explanation:-

Given:-

  • Two parallel lines CD and FG and AG is transversal

  • ∠ADB = x and ∠FGP = 121°

To find:-

  • Value of x

Construction:-

  • Produce CD to a point E and produce AG to a point P

Solution:-

CE || FG and AP is transversal

⇒ ∠CDG = ∠FGP                                                          [∵Corresponding angles]

⇒ ∠CDG = 121°

But, ∠CDG = ∠ADE                                                [∵Vertically opposite angles]

⇒ ∠ADE = 121°

Now,

∠ADB + ∠BDE = ∠ADE

⇒ ∠ADB = ∠ADE - ∠BDE

⇒ x = 121° - 50°

x = 71°

Answer⇒ x = 71°

Similar questions