Math, asked by arpanak045, 1 year ago

FIND THE VALUE OF X. IN THIS CIRCLE

Attachments:

Answers

Answered by deepak7567
6

Answer:

45 is the answer of x in the circle

Answered by tiwariakdi
0

Answer:

52

Step-by-step explanation:

Solution

(i) A circle with centre O

A

O

C

=

135

B

u

t

A

O

C

+

C

O

B

=

180

(

L

i

n

e

a

r

p

a

i

r

)

135

+

C

O

B

=

180

C

O

B

=

180

135

=

45

N

o

w

a

r

e

B

C

s

u

b

t

e

n

d

s

B

O

C

a

t

t

h

e

c

e

n

t

r

e

a

n

d

B

P

C

a

t

t

h

e

r

e

m

a

i

n

i

n

g

p

a

r

t

o

f

t

h

e

c

i

r

c

l

e

B

O

C

=

2

B

P

C

B

P

C

=

1

2

B

O

C

=

1

2

×

45

=

45

2

B

P

C

=

1

2

B

O

C

=

1

2

o

r

x

=

22

1

2

(ii)

C

D

a

n

d

A

B

a

r

e

t

h

e

d

i

a

m

e

t

e

r

s

o

f

t

h

e

c

i

r

c

l

e

w

i

t

h

c

e

n

t

r

e

O

A

B

C

=

40

B

u

t

i

n

Δ

O

B

C

,

O

B

=

O

C

(

R

a

d

i

i

o

f

t

h

e

c

i

r

c

l

e

)

O

C

B

=

O

B

C

=

40

N

o

w

i

n

Δ

B

C

D

,

O

D

B

+

O

C

B

+

C

B

D

=

180

x

+

40

+

90

=

180

(

A

n

g

l

e

s

o

f

a

t

r

i

a

n

g

l

e

)

x

+

130

=

180

x

=

180

130

=

50

(iii)

I

n

c

i

r

c

l

e

w

i

t

h

c

e

n

t

r

e

O

,

A

O

C

=

120

,

A

B

i

s

p

r

o

d

u

c

e

d

t

o

D

A

O

C

=

120

a

n

d

A

O

C

+

c

o

n

v

e

x

A

O

C

=

360

120

+

c

o

n

v

e

x

A

O

C

=

360

C

o

n

v

e

x

A

O

C

=

360

120

=

240

a

r

e

A

P

C

S

u

b

t

e

n

d

s

A

O

C

a

t

t

h

e

c

e

n

t

r

e

a

n

d

A

B

C

a

t

t

h

e

r

e

m

a

i

n

i

n

g

p

a

r

t

o

f

t

h

e

c

i

r

c

l

e

A

B

C

=

1

2

A

O

C

=

1

2

×

240

=

120

B

u

t

A

B

C

a

t

t

h

e

r

e

m

a

i

n

i

g

p

a

r

t

o

f

t

h

e

c

i

r

c

l

e

A

B

C

=

1

2

A

O

C

=

1

2

×

240

=

120

B

u

t

A

B

C

+

C

B

D

=

180

(

L

i

n

e

a

r

P

a

i

r

)

120

+

x

=

180

x

=

180

120

=

60

x

=

60

(iv) A circle with centre O and

C

B

D

=

65

B

u

t

A

B

C

+

C

B

D

=

180

(

L

i

n

e

a

r

p

a

i

r

)

A

B

C

+

65

=

180

A

B

C

=

180

65

=

115

Now are AEC subtends

x

at the centre and

A

B

C

at the remaining part of the cirle

A

O

C

=

2

A

B

C

x

=

2

×

115

=

230

x

=

230

(v) In circle with centre O AB is chord of the cirlce,

O

A

B

=

35

I

n

O

A

B

,

(

O

A

=

O

B

O

B

A

=

O

A

B

=

35

But in

O

A

B

O

A

B

+

O

B

A

+

A

O

B

=

180

35

+

35

+

A

O

B

=

180

70

+

A

O

B

=

180

A

O

B

=

180

70

=

110

C

o

n

v

e

x

A

O

B

=

360

110

=

250

But are AB subtends

A

O

B

at the centre and

A

C

B

at the remaining part of the circle

A

C

B

=

1

52

A

O

B

x

=

1

2

×

250

=

125

x

=

125

(vi) IN the circle with centr O, BOC is its diameter,

A

O

B

=

60

Are AB subtends

A

O

B

at the centre of the circle and

A

C

B

at the remaining part of he circle

A

C

B

=

1

2

A

O

B

=

1

2

×

60

=

30

B

u

t

i

n

O

A

C

,

O

C

=

O

A

O

A

C

=

O

C

A

=

A

C

B

x

=

30

(vii) IN the circle,

B

A

C

a

n

d

B

D

C

are in the same segment

D

B

C

+

B

C

D

+

B

D

C

=

180

70

+

x

+

50

=

180

x

+

120

=

180

x

=

180

120

=

60

x

=

60

(viii) IN circle with centre O,

O

B

D

=

40

AB and CD are diameters of the circle

D

B

A

a

n

d

A

C

D

are in the same segment

A

C

D

=

D

B

A

=

40

i

n

O

A

C

,

O

A

=

O

C

O

A

C

=

O

C

A

=

40

a

n

d

O

A

C

+

O

C

A

+

A

O

C

=

180

40

+

40

+

x

=

180

x

+

80

=

180

⇒x=180∘−80∘=100∘

∴x=100∘

(ix) In the circle, ABCD is a cyclic quadrilatral ∠ADB=32

,∠DAC=28∘,and∠ABD=50∘,∠ABDand∠ACD

are in the same segment of a circle

∴∠ABD=∠ACD

⇒∠ACD=50∘Similarly,∠ADB=∠ACB

⇒∠ACB=32∘

Now

∠DCB=∠ACD+∠ACB=50∘+32∘=82∘x=82∘

(x) IN a circle,

∠BAC=35

,∠CBD=65circ∠BACand∠BDC

are in the same segment

∴∠BAC=∠BDC=35∘

In△BCD,∠BDC+∠BCD+∠CBD=180∘

⇒35∘+x+65∘=180∘

⇒x+100=180∘

⇒x+100∘=180∘

⇒x−180∘−100∘=80∘

∴x=80∘

(xi) In the circle,

∠ABDand∠ACD

are in the same segment of a circle

∴ABD=∠ACD=40∘

Now in△CPD,∠CPD+∠PCD

+∠PDC=180∘⇒110∘+40∘+x=180∘

⇒x+150∘=180∘

∴x=180∘−150∘=30∘

(xii) In the circle, two diameters AC and BD intersect each other at O

∠BAC=50∘OA=OB

∴∠OBA=∠OAB=52∘

⇒∠ABD=52

But

∠ABDand∠ACDare n the same segment of the circle

∴∠ABD=∠ACD

⇒52∘=x

∴x = 52

https://brainly.in/question/13526154

#SPJ3

Similar questions