Math, asked by simmisingh08, 2 months ago

find the value of x is if sin sin^(-1)((x)/(5))+cos^(-1)((3)/(5)) =1​

Answers

Answered by pulakmath007
8

SOLUTION

GIVEN

 \displaystyle \sf{ \sin  \bigg( { \sin}^{ - 1} \frac{x}{5} +  { \cos}^{ - 1} \frac{3}{5}  \bigg) = 1   }

TO DETERMINE

The value of x

FORMULA TO BE IMPLEMENTED

 \displaystyle \sf{   \bigg( { \sin}^{ - 1} x+  { \cos}^{ - 1}x\bigg) =  \frac{\pi}{2}    }

EVALUATION

 \displaystyle \sf{ \sin  \bigg( { \sin}^{ - 1} \frac{x}{5} +  { \cos}^{ - 1} \frac{3}{5}  \bigg) = 1   }

 \displaystyle \sf{ \implies \:   \bigg( { \sin}^{ - 1} \frac{x}{5} +  { \cos}^{ - 1} \frac{3}{5}  \bigg) =  { \sin}^{ - 1} 1   }

 \displaystyle \sf{ \implies \:   \bigg( { \sin}^{ - 1} \frac{x}{5} +  { \cos}^{ - 1} \frac{3}{5}  \bigg) =   \frac{\pi}{2}  }

 \displaystyle \sf{ \implies \:   { \sin}^{ - 1} \frac{x}{5} =   \frac{\pi}{2} -  { \cos}^{ - 1} \frac{3}{5}  }

 \displaystyle \sf{ \implies \:   { \sin}^{ - 1} \frac{x}{5} =   { \sin}^{ - 1} \frac{3}{5}   }

 \implies \sf{x = 3}

FINAL ANSWER

Hence the required value of x = 3

tan⁻¹(x/y)-tan⁻¹(x-y/x+y)=...(x/y≥0),Select Proper option from the given options.

(a) π/4

(b) π/3

(c) π/2

(d) π

https://brainly.in/question/5596504

2. tan⁻¹2 +tan⁻¹3 is..,Select Proper option from the given options.

(a) - π/4

(b) π/2

(c) 3π/4

(d) 3π/2

https://brainly.in/question/5596487


amansharma264: Excellent sir
pulakmath007: Thank you Brother
Answered by Anonymous
0

Step-by-step explanation:

Hence the required value of x = 3

Similar questions