find the value of x minus a whole cube + x minus b whole cube + x minus C whole cube is equal to 3 into x minus A into x minus b into x minus 3 then a + b + C is equal to 3 x
Answers
Answered by
68
Answer:
a+b+c = 3x.... Proved.
Step-by-step explanation:
We are given that
...... (1)
And, we have to prove that, ...... (2)
Now we will prove it.
From equation (1), by simplification we get,
(x³-3x²a+3xa²-a³)+(x³-3x²b+3xb²-b³)+(x³-3x²c+3xc²-c³)=3(x-a)(x²-cx-bx+bc)
⇒(x³-3x²a+3xa²-a³)+(x³-3x²b+3xb²-b³)+(x³-3x²c+3xc²-c³)=3(x³-x²c-x²b+xbc-x²a+xac+xab-abc)
Cancelling equal terms from both sides we get,
⇒3x(a²+b²+c²)-(a³+b³+c³) =3x(ab+bc+ca)-3abc
⇒3x(a²+b²+c²-ab-bc-ca)= a³+b³+c³-3abc
We know the equation, a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-ab-bc-ca)
⇒3x(a²+b²+c²-ab-bc-ca)= (a+b+c)(a²+b²+c²-ab-bc-ca)
⇒3x= a+b+c
⇒a+b+c = 3x
Hence proved.
Similar questions