Math, asked by priyal460, 11 months ago

find the value of x


plzzz answer this question ​

Attachments:

Answers

Answered by xBrainlyKingXx
71

\rule{200}3

\color{red}\huge{\underline{\underline{\mathfrak{Question:-}}}}

A diagram given of a triangle with its outer angles as 110° and 100° . And 1 interior angle is given as x°.

We have to find the value of x.

\rule{200}3

\color{blue}\huge{\underline{\underline{\mathfrak{Answer}}}}

{\blue{\bold{\text{x = 30 degree }}}}

\rule{200}3

\color{orange}\huge{\underline{\underline{\mathfrak{Solution:-}}}}

{\blue{\bold{\text{Given}}}}

  • A triangle ABC
  • Exterior angle ACE and angle ABD are of 110° and 100° respectively.

{\blue{\bold{\text{To find=x}}}}

{\blue{\bold{\text{We know that}}}}

Angle ABD+ angle ABC =180° [Linear pair angles].....(1)

Similarly angle ACE+angle ACB is also 180°..........(2)

From eqn (1) and (2) we get angle ACB=70° and angle ABC=80°

{\blue{\bold{\text{In triangleABC}}}}

Sum of all interior angles is 180° by interior angle sum property .

So,

70°+80°+x°=180°

150°+x°=180°

x°=180°-150°

x°=30°

\rule{200}3

Hope it helps

Attachments:
Answered by Anonymous
32

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  •  \sf \angle ABD = 100°

  •  \sf \angle ACE = 110°

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • Measure of angle 'x'

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Here,

 \:\:

 \sf \longmapsto \angle ABD + \angle ABC = 180° [ Linear pair ]

 \:\:

 \sf \longmapsto 100° + \angle ABC = 180°

 \:\:

 \sf \longmapsto \angle ABC = 180 - 100

 \:\:

\purple\dashrightarrow  \bf\angle ABC = 80°

 \:\:

 \sf \longmapsto \angle ACB + \angle ACE = 180° [ Linear pair ]

 \:\:

 \sf \longmapsto \angle ACB + 110° = 180°

 \:\:

 \sf \longmapsto \angle ACB = 180 - 110

 \:\:

\purple\dashrightarrow  \bf\angle ACB = 70°

 \:\:

 \underline{\bold{\texttt{We know that,}}}

 \:\:

\purple\longrightarrow  \sf x + \angle ABC + \angle ACB = 180°

[ Sum of all angle of a triangle is 180° ]

 \:\:

 \sf \longmapsto x + 80° + 70° = 180°

 \:\:

 \sf \longmapsto x = 180 - 150

 \:\:

\red\longrightarrow  \boxed {x = 30°}

\rule{200}5

Attachments:
Similar questions