Math, asked by matchanagaraju963, 2 days ago

find the value of x so that [7/5]^8 × [49/25]^-2 = [7/5]^2x

Answers

Answered by ItzHannu001
5

Answer:

 \large \underline{ \sf{Question:-}}

 \tt  \large \rightarrow{ (\frac{7}{5} })^{8}  \times  { (\frac{49}{25}) }^{ - 2}  =  { (\frac{7}{5} })^{2x}

 \sf \large \underline{To \:  \:  Find:-}

  • We have to find the value of x

 \sf \large \underline{Solution:-}

 \implies \tt { (\frac{7}{5} })^{8}  \times  { (\frac{49}{25} })^{ - 2}  =  {( \frac{7}{5} })^{2x}

 \implies \tt \ { (\frac{7}{5} })^{8}  \times  { (\frac{ {7}^{2} }{ {5}^{2} } })^{ - 2}  =  { \frac{7}{5} }^{2x}

 \implies \tt { (\frac{7}{5} })^{8}  \times   { (\frac{7}{5} })^{ - 2 \times 2}  =   {( \frac{7}{5} })^{2x}

 \implies \tt { (\frac{7}{5} })^{8}  \times   { (\frac{7}{5} })^{ - 4}  =   {( \frac{7}{5} })^{2x}

As we know that if bases are equal then we equate powers,

 \implies \sf8 - 4 = 2x

 \implies \sf4 = 2x

 \sf \implies x =  \frac{4}{2}  =  \red2

 \sf So, Value \:   \: of   \:  \: \red{ x = 2}

Similar questions