Math, asked by yc3527158, 4 months ago

find the value of x square +1/x square when x=4 +root 15​

Answers

Answered by Aryan0123
28

Given:

  • x = 4 + √15

To find:

  • x² + 1/x²

Method:

First, let us find out 1/x

\sf{\dfrac{1}{x} = \dfrac{1}{4 + \sqrt{15} } =  \dfrac{1}{4 + \sqrt{15} } \times \dfrac{4 - \sqrt{15} }{4 - \sqrt{15} } = \dfrac {4 - \sqrt{15}}{16 - 15} }\\\\\\\implies \bf{\dfrac{1}{x} = 4 - \sqrt{15} }

x + 1/x

= 4 + √15 + 4 - √15

x + 1/x = 8

(\sf{x + \dfrac{1}{x})^{2} = x^{2} + \dfrac{1}{x^{2} }+ 2}\\\\\\\implies \sf{(8)^{2} = x^{2} + \dfrac{1}{x^{2} } + 2 }\\\\\\\implies \sf{64 = x^{2} + \dfrac{1}{x^{2} } + 2}\\\\\\\implies \sf{x^{2} + \dfrac{1}{x^{2}}= 64 - 2}\\\\\\\implies \boxed{\bf{x^{2} + \dfrac{1}{x^{2}}= 62} }

Answered by Anonymous
19

Solution

Given ,

  • x = 4+√15

To find ,

  • x^2 + 1/x^2

So,

  • x = 4+√15
  • 1/x = 1/4+√15

By rationalisation ;

 =  >  \frac{1}{4 +  \sqrt{15} }  \times  \frac{4 -  \sqrt{15} }{4 -  \sqrt{15} }

By [ (a+b)(a-b) a^2 - b^2 ]

 =  >  \frac{4 -  \sqrt{15} }{( {4}^{2}) - ( \sqrt{15 )^{2} } }

 =  >  \frac{4 -  \sqrt{15} }{16 - 15}

 \bold{ =  > 4 -  \sqrt{15}  =  \frac{1}{x} }

Now ,

  • x + 1/x = 4+√15+4-√15

Solving this ;

 =  > x +  \frac{1}{x}  = 4 +  \cancel{ \sqrt{15} } + 4 -  \cancel{ \sqrt{15} }

 =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  =  {8}^{2}  - 2

 =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 64 - 2

 \bold{ =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 62}

The value is x^2 + 1/x^2 = 62 .

Similar questions