Math, asked by ekdivyataneja, 7 months ago

Find the value of 'x'such that
28.
72x x75 =715​

Attachments:

Answers

Answered by Anonymous
13

Answer:

ANSWER :

x = 5

Step-by-step explanation:

QUESTION :

Find the value of ‘x’ such that

  {7}^{2x}  \:  \times  \:  {7}^{5}  \:  =  \:  {7}^{15}

 \\

CONCEPT USED :

  {a}^{m}  \:  \times  \:  {a}^{n}  \:  =  \:  {a}^{m  \: + \:  n}  \\ \\   {a}^{m }  \:   \div  \:  {a}^{n}  \:  =  \:  {a}^{m \:  -  \: n}

 \\

SOLUTION :

  {7}^{2x}  \:  \times  \:  {7}^{5}  \:  =  \:  {7}^{15}  \\  \\   \implies \:  {7}^{2x \:  +  \: 5}  \:  =  \:  {7}^{15}  \\  \\  \implies { \not \cancel7}^{2x \:  +  \: 5}  \:  =  \:  { \not \cancel7}^{15}  \\  \\  \implies \: 2x \:  +  \: 5  \: = \:  15 \\  \\  \implies \: 2x \:  =  \: 15 \:  -  \: 5 \\  \\  \implies \: 2x \:  =  \: 10 \\  \\  \implies \: x \:  =  \:   \cancel\frac{10}{2}  \\  \\  \implies \: x \:  =  \: 5

 \\

ANSWER :

x = 5

 \\

HOPE IT HELPS YOU !

THANKS !

Answered by BrainlyPotter176
21

\pink\bigstarAnswer:

\boxed{x \: = \: 5 }

\red\bigstar Given:

  •   \sf \: {7}^{2x}  \times  \:  {7}^{5}  \:  =  \:  {7}^{15}

\bigstarTo find:

  • The value of x.

\bigstar Solution:

 \sf \:  {7}^{2x}  \:  \times  \:  {7}^{5}  =  \:  {7}^{15}  \\  ( \because \:  \sf we \: know \: that \: \:  {a}^{b} \:  \times  \:  {a}^{c }   \:  =  \:  {a}^{b \:  +  \: c} ) \\  \implies \:  \sf \:  {7}^{2x \:  +  \: 5}  \:  =  \:  {7}^{15}  \\ ( \because \:  \sf \: we \: know \: that \: when \: bases \:  are \: same \: then \: powers \: are \: equal) \\ \implies  \sf\: 2x \:  +  \: 5 \:  =  \: 15 \\   \sf\implies \: 2x \:  =  \: 15 \:  -  \: 5 \\  \sf \:  \implies \: 2x =  \: 10 \\  \sf \:  \implies x \:  =  \:  \dfrac{10}{2}  \\  \sf\implies \:  \boxed{ \: x \:  =  \: 5}

\bigstar Concepts Used:

 \bullet \: \:   {a}^{b} \:  \times  \:  {a}^{c }   \:  =  \:  {a}^{b \:  +  \: c}  \:  \sf \:  \\  </p><p> \bullet\sf   \: when \: bases \:  are \: same \: then \: powers \: are \: equal

Similar questions