Math, asked by sudarshan162, 1 year ago

Find the value of x
 {13}^{ \sqrt{x } }  =  {4}^{4}  -  {3}^{4} - 6

Answers

Answered by pratyush4211
13

 {13}^{ \sqrt{x } } = {4}^{4} - {3}^{4} - 6  \\  \\  {13}^{ \sqrt{x} }  =  ({4}^{2{}^{2} } ) -  ({3}^{2 {}^{2} } ) - 6 \\  \\  {13}^{ \sqrt{x} }  =  {16}^{2}  -  {9}^{2}  - 6 \\  \\  {13}^{ \sqrt{x} }  = 256 - 81 - 6 \\  \\  {13}^{ \sqrt{x} }  = 256 - 87 \\  \\  {13}^{ \sqrt{x} }  = 169 \\  \\ 169 = 13 \times 13 \\  \\  {13}^{ \sqrt{x} }  =  {13}^{2}

As we Know

 {x}^{a}  =  {x}^{b}  \\  \\ a = b

 {13}^{ \sqrt{x} }   =  {13}^{2} \\  \\  \sqrt{x }   = 2

Squaring Both Sides

 \sqrt{x}  {}^{2}  =  {2}^{2}  \\  \\ x = 4

\underline{\mathbf{\huge{X=4}}}

Similar questions