Math, asked by Anonymous, 2 months ago

find the value of x

  \bigstar\boxed{ \sf \bigg( \dfrac{4}{9}  \bigg) ^{ \sqrt{x} }  = (2.25)^{\sqrt{x} - 4 } }
Topic - Exponential Functions

Class - 11th ​

Answers

Answered by pari9054
21

find \: the \: value \: of \: x

Question:-

( \frac{4}{9} ) = 2.25 ^{ \sqrt{x - 4} }

Solution:-

( \frac{4}{9}) ^{x}   =   \frac{9}{4}  \    ^{ \sqrt{} x - 4}  \\  =  \ - \sqrt{} {x}  =  \sqrt{x}  - 4 =  \sqrt{ x}  \\  = 2 = x = 4

Hope it will help you

Attachments:
Answered by AestheticSky
88

 \large{ \pmb{ \sf solution :  -  }}

  : \implies \sf \bigg( \dfrac{4}{9} \bigg) ^{ \sqrt{x} } = (2.25)^{\sqrt{x} - 4 }

  : \implies \sf \bigg(  \dfrac{4}{9}  \bigg) ^{ \sqrt{x} }  =  \bigg( \dfrac{225}{100}  \bigg) ^{ \sqrt{x} - 4 }

 :  \implies \sf   \bigg( \dfrac{4}{9}  \bigg) ^{ \sqrt{x} }  =  \bigg( \dfrac{9}{4}  \bigg) ^{ \sqrt{x} - 4 }

 :  \implies \sf  \bigg [\bigg( \dfrac{9}{4}  \bigg) ^{( - 1)}  \bigg] ^{ (\sqrt{x}) }  =  \bigg( \dfrac{9}{4}  \bigg) ^{( \sqrt{x} - 4 )}

 :  \implies \sf  \bigg( \dfrac{9}{4}  \bigg) ^{ -  \sqrt{x} }  = \bigg( \dfrac{9}{4}  \bigg) ^{   \sqrt{x}  - 4}

Since the base are equal in both the sides we can equate their exponents !

 :  \rightarrow \sf   - \sqrt{x}  =  \sqrt{x}  - 4

  : \rightarrow \sf  \sqrt{x}  = 2

 :  \rightarrow \sf x = 4

Similar questions