Math, asked by Anonymous, 3 months ago

Find the value of x, \sf{\bigg[ \dfrac{5 {x}^{2}  - 10}{12  } \bigg] }

Please tell the solution also. ​

Answers

Answered by Intelligentcat
13

Given :-

  • Equation :- \sf{\bigg[ \dfrac{5 {x}^{2} - 10}{12 } \bigg] }

Have to Find :-

  • The value of ' x '

Solution :-

Taking the whole equation = 0

According to the factor Theorem

\sf{\bigg[ \dfrac{5 {x}^{2} - 10}{12 } \bigg] }

↬ 5x² - 10/ 12 = 0

↬ 5x² - 10 = 0 × 12

↬ 5x² - 10 = 0

↬ 5x² = 10

↬ x² = 10/5

↬ x² = 2

↬ x = √2

Therefore, the value of ' x ' is √2

_____________________________

Answered by NewGeneEinstein
4

Step-by-step explanation:

Given Equation:-

⠀⠀⠀⠀ \sf{\bigg[ \dfrac{5 {x}^{2} - 10}{12 } \bigg] }

To find:-

value of x

Solution:-

use factor theorem

take the value of equation =0

\\\qquad\quad\displaystyle\sf{:}\longrightarrow \left [\dfrac {5x^2-10}{12}\right]=0

\\\qquad\quad\displaystyle\sf{:}\longrightarrow \dfrac {5x^2-10}{12}=0

  • using cross multiplication

\\\qquad\quad\displaystyle\sf{:}\longrightarrow 5x^2-10=0

\\\qquad\quad\displaystyle\sf{:}\longrightarrow 5x^2=10

\\\qquad\quad\displaystyle\sf{:}\longrightarrow x^2=\dfrac {10}{5}

\\\qquad\quad\displaystyle\sf{:}\longrightarrow x^2=2

\\\qquad\quad\displaystyle\sf{:}\longrightarrow x=\sqrt {2}

\\\\\therefore\sf x=\sqrt {2}.

Similar questions