Math, asked by hemanth1831, 9 months ago

Find the value of x. The distance between (4,x) and (-5,8) is √155​

Attachments:

Answers

Answered by AdorableMe
2

Answer:

x=16.602

or

x= -0.602

Step-by-step explanation:

\sqrt{(-5-4)^2+(8-x)^2}  = \sqrt{155}

\sqrt{(-9)^2+8^2+x^2-16x} =\sqrt{155}

\sqrt{81+64+x^2-16x} =\sqrt{155}

\\81+64+x^2-16x=155

145+x^2-16x=155

x^2-16x=10

x^2-16x-10=0

x=\frac{-b\±\sqrt{b^2-4ac} }{2a}

x=\frac{16\±\sqrt{256+40} }{2}

x=\frac{16\±\17.204}{2}

x=\frac{16+17.204}{2}  or  x=\frac{16-17.204}{2}

x=16.602  or  x=-0.602

Answered by kaushikumarpatel
0

Answer:

Distance = √ 155

Distance = √ (x 2 - x 1)^2 + (y 2 - y 1)^2

Distance = √ (8 - x)^2 + (- 5 - 4)^2

Distance = √ 64 - 16 x + x^2 + 81

√155 = √ 64 - 16 x + x^2 + 81

On squaring both sides we get,

155 =  64 - 16 x + x^2 + 81

x^2 - 16 x - 10 = 0

Using Shri Dharacharya,

x =(16+√296)/2=8+√ 74 = 16.602 or

x =(16-√296)/2=8-√ 74 = -0.602

So, x = 17 or -1

HOPE THAT IT WAS HELPFUL!!!!

MARK IT THE BRAINLIEST IF IT REALLY WAS!!!!

Similar questions