Math, asked by Akanksha1347, 2 months ago

Find the value of x

What is the answer?

Attachments:

Answers

Answered by SavageBlast
122

Given data:-

  • 5^{2x+1} \div 25 = 125

To Find:-

  • Value of x.

Rules used:-

  • If we divide two exponents with the same base then their powers will subtract.

Solution:-

⟹5^{2x+1} \div 5² = 5³

⟹5^{2x+1-2}  = 5³

Comparing exponents,

⟹2x+1-2= 3

⟹2x-1 = 3

⟹2x=3+1

⟹x = \dfrac{4}{2}

{\boxed{⟹x = 2}}

Hence, The Value of x is 2.

━━━━━━━━━━━━━━━━━━━━━━━━━

More to know:-

  • When two exponential terms with the same base are multiplied, their powers are added while the base remains the same.

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by 12thpáìn
4

Given

  •  \sf{ {5}^{2x + 1} \div 25 = 125 }

To Find

  • Value of x

Solution

~~~~~:\implies  \sf~~~{5}^{2x + 1} \div 25 = 125

~~~~~:\implies  \sf~~~{5}^{2x + 1} \div  {5}^{2}  =  {5}^{3}

~~~~~~~~~~~~~~~~~\boxed{\bf{   \gray{a^m ÷a^n= a^{m-n}} }}

~~~~~:\implies  \sf~~~{5}^{2x + 1 - 2}   =  {5}^{3}

~~~~~:\implies  \sf~~~{5}^{2x  - 1}   =  {5}^{3}

On comparing both sides we get

~~~~~:\implies  \sf~~~2x  - 1   =3

~~~~~:\implies  \sf~~~2x     =3 + 1

~~~~~:\implies  \sf~~~2x     =4

~~~~~:\implies  \bf{\underbrace{~~~x     =2~~~}}\\\\

Laws of Exponents

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf  \bigstar{a}^{m} \times {a}^{n} = {a}^{m + n} \: \: \: \: \: \: \: \: \: \: \sf \bigstar{a}^{m} \div {a}^{n} = {a}^{m - n} \\  \:  \:  \:  \: \sf{\bigstar( {a}^{m} ) ^{n} = {a}^{mn} \: \: \: \: \: \: \: \: \: \:  \:  \:  \: \: \: \: \: \: \: \bigstar a {}^{m} \times {n}^{m} = (ab) ^{m} } \:  \:  \:  \:\\  \:  \: \sf\bigstar{a}^{0} = 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \ \: \: \: \: \: \: \: \: {\bigstar\frac{ {a}^{m} }{ {b}^{m} }= \left( \frac{a}{b} \right) ^{m} } \:  \:  \:  \:  \:  \:  \:  \:\\\\\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions