Math, asked by piyushsolanki07, 1 month ago

Find the value of X, when 2^(x+4) × 3^(x+1) = 288​

Answers

Answered by user0888
27

\large\text{\underline{Question:-}}

Solve the exponential equation

\hookrightarrow \boxed{2^{x+4}\cdot 3^{x+1}=288}

\large\text{\underline{Solution:-}}

Note that,

\hookrightarrow 2^{x+4}=2^{4}\cdot 2^{x}\text{ and }3^{x+1}=3\cdot 3^{x}

Now, from the above,

\hookrightarrow 2^{4}\cdot 3\cdot2^{x}\cdot 3^{x}=288

\hookrightarrow 2^{x}\cdot 3^{x}=\dfrac{2^{5}\cdot 3^{2}}{2^{4}\cdot 3}

We know that,

\hookrightarrow \boxed{\dfrac{a^{x}}{a^{y}}=a^{x-y} }

\hookrightarrow 2^{x}\cdot 3^{x}=2^{5-4}\cdot3^{2-1}

\hookrightarrow 2^{x}\cdot 3^{x}=6

We know that,

\hookrightarrow \boxed{a^{x}b^{x}=(ab)^{x}}

So,

\hookrightarrow 6^{x}=6^{1}

Now we compare the exponent as the base is the same.

\hookrightarrow x=1

\large\text{\underline{Verification:-}}

\hookrightarrow \text{(L.H.S)}=2^{4+1}\cdot 3^{1+1}

\hookrightarrow \text{(L.H.S)}=2^{5}\cdot 3^{2}

\hookrightarrow \text{(R.H.S)}=288

\hookrightarrow \text{(R.H.S)}=2^{5}\cdot 3^{2}

Hence,

\hookrightarrow \text{(L.H.S)}=\text{(R.H.S)}

\large\text{\underline{Answer:-}}

This equation has x=1 as a solution.

Answered by God163
0

 \huge \sf{ \purple{ \fbox{ \green{ \fbox{ \blue{ \fbox{ \red{answer}}}}}}}}

Your answer is in image.

Attachments:
Similar questions