Math, asked by kishankumar16026, 4 months ago

Find the value of x which: (x+4)²-(x-5)²=9 *​

Answers

Answered by dormamuuuuuuu
0

Answer:

x=1

Step-by-step explanation:

x^2+8x+16-(x^2-10x+25)=9

x^2+8x+16-x^2+10x-25=9

18x-9=9

18x=9+9

18x=18

x=1

Answered by Anonymous
51

Answer :-

\implies\sf (x+4)^2-(x-5)^2=9

Using the identities :-

  • \sf ( a + b )^2 = a^2 + b^2 + 2ab
  • \sf ( a - b )^2 = a^2 + b^2 - 2ab

\implies\sf x^2 + 4^2 + 2 ( x ) ( 4) - [ x^2 + 5^2 - 2 ( x )(5) ] = 9

\implies\sf x^2 + 16 + 8x - [ x^2 + 25 - 10x ] = 9

\implies\sf x^2 + 16 + 8x - x^2 - 25 + 10x = 9

\implies\sf \cancel{x^2} - \cancel{x^2} + 16 - 25 + 8x + 10x = 9

\implies\sf -9 + 8x + 10x = 9

\implies\sf 18x - 9 = 9

\implies\sf 18x = 9 + 9

\implies\sf 18x = 18

\implies\sf x = \dfrac{18}{18}

\implies\sf x = 1

Value of x = 1

Verification :-

\sf LHS = (x+4)^2-(x-5)^2

\implies\sf LHS = ( 1+4)^2 - (1-5)^2

\implies\sf LHS = 5^2 - (-4)^2

\implies\sf LHS = 25 - 16

\implies\sf LHS = 9

\sf RHS = 9

LHS = RHS

Hence verified.

Similar questions