Find the value of x , (x-a/x-b)+(x-b/x-a) = (a^2+b^2/ab)
Attachments:
tnwramit1:
x=2 is this ur ans
Answers
Answered by
3
Hey i have used shortcut for this not sure about method
Attachments:
Answered by
3
Given Equation is
On cross multiplication we get
ab(x-a)^2 + ab(x-b)^2 = (a^2+b^2)(x-b)(x-a)
We know that (a-b)^2 = a^2+b^2-2ab.
ab(x^2+a^2-2ax) + ab(x^2+b^2-2bx) = (a^2+b^2)(x-b)(x-a)
abx^2 +a^3b - 2a^2bx + abx^2 + ab^3 - 2ab^2x = a^2x^2-a^3x-a^2bx+a^3b+b^2x^2-ab^2x-b^3x+ab^3
a^3b - 2a^2bx + 2abx^2 - 2ab^2x +b^3x - b^2x^2 = a^2x^2 - a^3x - a^2bx + a^3b
b^3x - ab^2x -b^2x^2 - 2a^2bx + 2abx^2 = a^2x^2 - a^3x - a^2bx
-b^2x^2 + 2abx^2 + b^3x - ab^2x - a^2bx + a^3x = a^2x^2
(-b^2+2ab-a^2)x^2 + (b^3 -ab^2 -a^2b+a^3)x = 0
We know that Quadratic Equation formula is
=
=
=
=
= 0.
If u solve this equation using , U will get.
Therefore the value of x = 0 and -
Hope this helps!
On cross multiplication we get
ab(x-a)^2 + ab(x-b)^2 = (a^2+b^2)(x-b)(x-a)
We know that (a-b)^2 = a^2+b^2-2ab.
ab(x^2+a^2-2ax) + ab(x^2+b^2-2bx) = (a^2+b^2)(x-b)(x-a)
abx^2 +a^3b - 2a^2bx + abx^2 + ab^3 - 2ab^2x = a^2x^2-a^3x-a^2bx+a^3b+b^2x^2-ab^2x-b^3x+ab^3
a^3b - 2a^2bx + 2abx^2 - 2ab^2x +b^3x - b^2x^2 = a^2x^2 - a^3x - a^2bx + a^3b
b^3x - ab^2x -b^2x^2 - 2a^2bx + 2abx^2 = a^2x^2 - a^3x - a^2bx
-b^2x^2 + 2abx^2 + b^3x - ab^2x - a^2bx + a^3x = a^2x^2
(-b^2+2ab-a^2)x^2 + (b^3 -ab^2 -a^2b+a^3)x = 0
We know that Quadratic Equation formula is
=
=
=
=
= 0.
If u solve this equation using , U will get.
Therefore the value of x = 0 and -
Hope this helps!
Similar questions