Find the value of (x/y)^3 . if (25/36)^-3×(5/6)^-2=(x/y)^-8 ?
Answers
Answered by
1
Step-by-step explanation:
Given :-
(25/36)^-3×(5/6)^-2=(x/y)^-8
To find :-
Find the value of (x/y)^3 ?
Solution :-
Given equation is (25/36)^-3×(5/6)^-2=(x/y)^-8
=> [(5^2/6^2)^-3] × (5/6)^-2 = (x/y)^-8
=>[ (5/6)^2]^-3 × (5/6)^-2 = (x/y)^-8
Since (a/b)^m = a^m / b^m
=>[ (5/6)^(2×-3) ]×(5/6)^-2 = (x/y)^-8
Since (a^m)^n = a^(mn)
=> (5/6)^-6 × (5/6)^-2 = (x/y)^-8
=> (5/6)^(-6)+(-2) = (x/y)^-8
Since a^m × a^n = a^(m+n)
=> (5/6)^(-6-2) = (x/y)^-8
=> (5/6)^-8 = (x/y)^-8
=> (x/y)^-8 = (5/6)^-8
On Comparing both sides then
=> x/y = 5/6
Therefore, the value of x/y = 5/6
Now, (x/y)^3 = (5/6)^3
=>(5/6)×(5/6)×(5/6)
=> (5×5×5)/(6×6×6)
=> 125/216
Answer:-
The value of (x/y)^3 for the given problem is 125/216
Used formulae:-
- a^m × a^n = a^(m+n)
- (a/b)^m = a^m / b^m
- (a^m)^n = a^(mn)
- If a^m = a^n => m = n
Similar questions