Math, asked by sanjaymishra2302, 8 months ago

find the value of x,y and z from the given parallelogram
please answer me with solution on today​

Attachments:

Answers

Answered by pidwa9
3

Your answer is there☝️, bud. Hope it helps:)

Attachments:
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
37

\displaystyle\large\underline{\sf\red{Given}}

\displaystyle\sf \angle DCB = 65^{\circ}

✭ ABCD is a parallelogram

\displaystyle\large\underline{\sf\blue{To \ Find}}

◈ The Value of x,y & z?

\displaystyle\large\underline{\sf\gray{Solution}}

✪ Opposite Angles of a parallelogram are equal

✪ Adjacent angles of a parallelogram add up to 180°

━━━━━━━━━

\underline{\bigstar\:\textsf{According to the given Question :}}

So as per the figure,

\displaystyle\sf \angle DCB = \angle DAB \:\:\: \{Alt \ Angles\}

\displaystyle\sf \angle DAB = 65^{\circ}

Also,

\displaystyle\sf \angle DAB = \angle EFG\:\:\:\{Alt \ Angles\}

\displaystyle\sf\green{x = 65^{\circ}}

Then,

\displaystyle\sf \angle DCB + \angle CBA = 180^{\circ} \:\:\:\{Adjacent \ Angles\}

\displaystyle\sf \angle 65^{\circ} + y = 180^{\circ}

\displaystyle\sf y = 180^{\circ}-65^{\circ}

\displaystyle\sf \orange{y = 115^{\circ}}

In parallelogram EFGA

\displaystyle\sf \angle AEF +\angle EFG = 180^{\circ}\:\:\: \{Adjacent \ Angles \}

\displaystyle\sf z+65^{\circ}=180^{\circ}

\displaystyle\sf z = 180-65

\displaystyle\sf \pink{z = 115^{\circ}}

━━━━━━━━━━━━━━━━━━

Similar questions